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PREFACE

Public transportation officials have had a tendency to concentrate

their planning and design efforts on rail and and fixed route bus sys-

tems. However, the combination of shifting residential densities and

the desire for public transportation to serve a wider spectrum of travel

needs has focused increasing attention on demand responsive transporta-

tion (DRT) systems. Demand responsive transportation refers not to one

type of system, but encompasses a wide range of possible service options

that have one common element: they respond to the demands of passengers

both in terms of where and when they wish to travel.

A critical problem local planners face when they attempt to design

DRT systems is the difficulty of forecasting future patronage; many of

the major decisions on capital outlays such as the number of vehicles

purchased depend on expected ridership levels. In response to this need

for planning methods, this study, funded under contract DOT-TSC-977,

entitled, "A Method for Estimating Patronage of Demand Responsive Trans-

portation Systems," has developed a computer-based procedure which can be

used by local planners to predict DRT patronage.

Cambridge Systematics wishes to thank the individuals who contri-

buted to the scope and direction of this study. Howard Simkowitz and

Donald Ward of the U.S. Department of Transportation, Transportation

Systems Center, deserve special mention for their critical review and

helpful comments throughout the course of this study.
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The authors personally thank the other members of the staff at

Cambridge Systematics who contributed to this project: Moshe E. Ben-

Akiva, Charles F. Manski, John R. Sawyer, Carol A. Walb , Christine M.

Winquist and Jeanne S. Roberts.
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EXECUTIVE SUMMARY

The demand responsive patronage forecasting procedure consists of

three basic modules: work trip demand; non-work trip demand; and level

of service prediction. The model explicitly treats the quality of ser-

vice provided by the DRT system as a determinant of expected patronage.

Conversely, the model also represents the supply relationship, which recog-

nizes that the quality of service provided by the DRT system itself depends

on the ridership. The final forecast is therefore the ridership level and

service level which simultaneously satisfy these two basic relationships.

The patronage prediction procedure requires as inputs a descrip-

tion of the intended service area, current work trip patterns, the char-

acteristics of the population served and the major design parameters

such as the vehicle fleet size, the type of vehicles being used (buses

or taxis) and the fare level. Using this data, the model predicts

patronage and service levels for each user-specified interval during

the day. By testing alternative configurations of fleet size, vehicle

type, service area and fare level, the planner can explore the impacts

of a range of alternative designs and determine the key sensitivities.

The work and non-work travel demand models rely on disaggregate

choice theory, a relatively new methodology which considers the de-

cisions individual travellers make when confronted with a set of pos-

sible trip-making alternatives, one and only one of which is selected.

These models represent the current state-of-the-art in travel demand

modelling and provide for a much more complete and realistic description

xi



of trip-making behavior than more traditional procedures.

One of the unique features of the model system involves a proced-

ure to model complex tours of non-work trips by simulating a passenger's

choice pattern (including both destination and mode) over the course of

the day.

Both the work and non-work travel prediction submodels were devel-

oped using data from two urban areas, Haddonfield, New Jersey, and

Rochester, New York, which had operational DRT systems. Due to a small

data sample and coding problems associated with the Haddonfield home

interview survey, only the Rochester data were used to calibrate the

final set of models. The Haddonfield information did, however, provide

an important starting point for the demand model development, since the

data set was readily available. Model specifications tested on the

Haddonfield data permitted later efforts with the more complete Roches-

ter data to be better focused.

The level of service prediction component of the model (i.e., given

a demand level and distribution pattern over an area, and a number of

vehicles, what will the wait and ride times be?) was developed by using

information from a computer simulation of DRT operations. This simula-

tion was developed at M.I.T. and was previously validated with data from

the Haddonfield, New Jersey DRT system. Using data generated by exe-

cuting the simulation to forecast DRT service quality under a wide range

of operating conditions, sets of equations for predicting expected wait

time and travel time were developed, given the demand level and the

xii



number of vehicles. These equations can be used separately from the

computer-based procedure as independent planning tools.

The entire patronage prediction procedure was validated by apply-

ing it to twTo other urban areas with DRT systems: LaHabra, California,

and Davenport, Iowa. These cities were quite different from the cities

used for calibrating the model, and therefore present a major test for

the forecasting procedure. For example, the Davenport system uses

taxis and charges fares that are about a factor of two higher than

those charged in Rochester, which relies on minibuses.

Comparison of observed ridership levels for these two cities with

levels predicted by the model resulted in errors of 26% and 33% respec-

tively, for Davenport and LaHabra. Comparison of observed and pre-

dicted ride and wait times for these two cities resulted in errors of

6% and 30% for Davenport (with 21% error in total time) and 9% and 14%

for La Habra (with 15% error in total time).

Recognizing that many agencies will not have the staff and resour-

ces to implement and use the above detailed model, a simplified sketch

planning model was also developed. This procedure was developed from

the more complex computerized model system but requires only simple de-

scriptions of the service area and DRT system to use.

Use of this procedure for six additional existing DRT systems con-

firmed that the model system produces estimates with a maximum error of

approximately +30% of the observed ridership levels. The total average

error for the six sites was -.2%.
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This report describes the forecasting model, the calibration and

validation results, the sketch planning model and in appendices docu-

ments the technical details of the models. These appendices also in-

clude documentation of the computer program and a description of the

format of the magnetic tape on which the program is contained.

X
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SECTION 1

INTRODUCTION TO DEMAND RESPONSIVE TRANSPORTATION

1.1 Objective and Outline of Report

In the past, public transportation officials tended to concentrate

their planning and design efforts on rail and fixed route bus systems.

However, the combination of shifting residential densities and the desire

for public transportation to serve a wider spectrum of travel needs has

focused increasing attention on demand responsive transportation (DRT)

.

Such transportation systems are in reality a wide range of possible

service options that have one common element: they respond to the in-

dividual travel desires of passengers. For the purposes of this study,

DRT systems were defined as transportation services which respond di-

rectly to calls for service from the public, do not use fixed schedules,

and provide door-to-door service to customers.

This report describes a patronage forecasting model designed for

use by local agencies seeking to determine the effect of different

service areas, vehicle fleet sizes, fare structures and dispatching

methods on total DRT patronage. Local agencies could use this model

to help predict the economic viability of a specific DRT system or a

range of alternative DRT systems.

The model consists of a series of relationships which collectively

describe the major determinants of DRT patronage. The model has been

implemented in a self-contained computer program designed for local use.

Recognizing that many agencies will not have the staff and resour-

1



ces to implement and use the detailed model, a simplified sketch plan-

ning model has also been developed. This model is a set of curves,

or nomographs, derived from exercising the computer model, but its use

requires only simple descriptions of the service area and DRT system.

The remainder of this section is a brief overview of the spectrum

of possible DRT services.* Section 2 is a non-technical overview of

the model system. All technical documentation of the model system, in-

cluding calibration results and a description of some of the models

which were tried but rejected in the course of the study, is contained

in Appendices A And B.

Section 3 explains how to use the model by listing the required

data and presenting an example based on Irondequoit ,
New York, a DRT

system which offers a sophisticated combination of services. This

section is supplemented by Appendix C, a user's manual for the com-

puter program, and Appendix D, documentation of the available computer

tape describing the program.

Section 4 describes tests of the detailed model on DRT systems in

Davenport, Iowa and LaHabra, California. This chapter also serves to

illustrate some of the issues users of the model should be aware of to

interpret the model's output.

Section 5 describes the sketch planning model including the method

used to derive it and its use and limitations.

*More complete summaries are available in other sources, such as U.S.

D.O.T., 1974).

2



The final section is a brief summary and conclusion which describes

the role of planning tools in DRT design and identifies unresolved is-

sues in DRT patronage forecasting.
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1.2 Background

Demand responsive transportation (DRT) is a form of transport that,

in a period of approximately ten years, has developed from a new ser-

vice concept to well over one hundred operating systems in North America

DRT refers to a wide range of urban transportation options that have one

common element; they respond to the individual needs of passengers, both

when and where they want to travel. Unlike conventional public transit

services which are constrained by fixed routes and schedules, DRT ser-

vices are based on completely flexible routes and schedules.

Interest in demand responsive transportation arose in response to

decreases in residential density and to increased diffusion of urban

trips. These shifts, fostered by the emergence of the automobile as

the dominant transportation mode, have reinforced the role of the auto-

mobile, and contributed to the deterioration of many public transporta-

tion systems. Because DRT vehicles are not constrained to fixed routes,

they can more effectively serve low density areas. By providing door-

to-door service, DRT offers a high quality alternative to the automobile

while at the same time providing a service well suited to groups such as

the elderly and handicapped.

DRT systems are distinguished from the traditional taxi by their

use of ride sharing - several groups may be served by a vehicle simul-

taneously. Thus, DRT systems seek to combine higher vehicle productiv-

ities (passengers per vehicle hour or vehicle mile) , and high quality

door-to-door service. When DRT research began in the mid-1960's, the

4



only existing services that could be classified as DRT were a handful

of shared-ride taxi services. The research at that time focused on ways

of providing more efficient DRT services.

Early experiments with this "new generation" of DRT services were

somewhat limited in their demand responsiveness. In some cases only a

single major destination was served and service was restricted to people

desiring daily travel (e.g., the subscription bus services implemented

in Peoria, Illinois, and Flint, Michigan). In other cases, vehicles

would operate on a basic fixed route but make detours to serve doorstep

requests on demand (e.g., the route deviation systems in Mansfield, Ohio,

and Emmen, The Netherlands). By the early 1970's, "many to many"* DRT

systems were being introduced. Interest in the concept grew rapidly,

and in August, 1974, a report by the U.S. Department of Transportation

indicated that more than forty DRT systems had been implemented in North

America

.

Since that time, the number of DRT systems in operation has in-

creased dramatically, despite the well publicized problems encountered

in some of the larger scale systems such as Santa Clara, California and

Haddonfield, New Jersey. The increased interest in DRT service can be

traced to a number of factors. One is the suitability of DRT service

for the elderly and handicapped. This is coupled with the availability

of funding for non-profit agencies to provide transportation services

through Health, Education and Welfare (HEW) and the Urban Mass Trans-

*Many origins to many destinations as opposed to the simpler "many to

one" type of systems.
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portation Administration (UMTA) 16b(2) Program. In addition,

anticipation of the new Federal guidelines for serving the elderly

and handicapped led many localities to develop special trans-

portation services.

Another important factor in the spread of DRT service has

been the growing emphasis placed by both FHWA and UMTA on low

cost transportation alternatives. This emphasis culminated in

the Transportation Systems Management (TSM) requirements. Demand

responsive transportation is being recognized as a low capital

cost alternative for providing a given level of service to low

density markets with higher vehicle p r o d uc t i v i t i e s ( a nd lower

cost) than could be achieved with fixed route operations. DRT

can perform a number of major functions. For example, in low

density areas, it can replace uneconomic fixed route services.

It can also be used to provide co 1 1 e c t o r / d i s t r i b u t i on service

in an integrated feeder/line haul system.

6



1.3 Types of Demand Responsive Transportation Systems

The increased interest in DRT has been accompanied by a recognition

of a broad range of service possibilities. A useful way to distinguish

demand responsive transportation systems is to characterize them by

their degree of demand responsiveness in space and time. At one end of

this spectrum is the fully demand responsive system in both time and

space, often known as dial-a-ride . In such a system, point-to-point

service is provided on demand anywhere within a service area. This type

of system is one of the most popular forms of DRT service and has been

implemented in such places as Rochester, New York, and La Habra, Cali-

fornia .

In a zonal dial-a-ride system, space responsiveness is constrained

by limiting direct trips to locations within a given zone and requiring

transfers for trips across zone boundaries. This approach is effective

in large areas, particularly those which have a major activity center

such as a shopping center which can serve as a transfer point. Many

Canadian DRT systems, such as the one in Regina, Saskatchewan, and the

Ann Arbor, Michigan system, are zonal systems.

Another type of DRT system which restricts the degree of space

responsiveness is the many-to-one or many- to- few dial-a-ride. In such

a system, passengers are picked up at any location, but taken only to

one or a few major activity centers (and vice versa) . This type of

system is sometimes used to serve major employment or shopping centers.

It may also be used to provide feeder service to a line haul facility.

7



The latter type of service is provided in Bay Ridges, Ontario, and a

number of other communities. The ability of dial-a-ride to serve as

a feeder system is receiving increased scrutiny by the U.S. Department

of Transportation, and demonstration of this ability is one of the ob-

jectives of a major UMTA Service and Methods demonstration in Roches-

ter, New York.

Route deviation service is less responsive, both in time and

space. In this type of system, vehicles follow a regular route and ad-

here to a schedule but are free to deviate from the route to pick-up

and drop-off passengers upon request. Following a deviation, the ve-

hicle will return to the point at which it left the route. The origins

of the route deviation concept can probably be traced back to the jit-

ney; a more recent route deviation experiment was the Mansfield, Ohio

system.

A variation of route deviation, known at times as point deviation ,

has fewer spatial restrictions. In a point deviation system vehicles

are scheduled to depart from a series of checkpoints at regularly

scheduled times. Vehicles are constrained only at the check points and

can follow any path between checkpoints necessary to serve requested

doorstep pick-ups and drop-offs. Point deviation service is presently

being provided in Merrill , Wisconsin

.

Another system that is restrictive in time but less restrictive

in space might be called a discrete run time system. In such systems,

vehicles are scheduled to leave a particular point at certain times.

8



make loops through the service area to pick-up and drop-off passengers,

and finally return to the starting point for the next scheduled run.

This type of service is most often employed in feeder/distributer and

zonal systems, as in Ann Arbor and Regina.

Another factor that impacts the time-responsiveness of a DRT sys-

tem is the restriction on when a passenger can request service. In

each of the services described thus far, passengers wanting to be picked

up at their door could request service essentially just before they want

to travel. Alternatively, passengers may be required to request service

in advance. This type of "by reservation only" system would typically

be introduced to allow time for efficient scheduling, which could in-

crease the productivity of the service. In some systems, passengers

have to request service at least one hour in advance, in other systems,

24 hours or more. In systems operating like this, including many spe-

cialized services for the elderly and handicapped, vehicles may not even

have communication equipment.

The final type of service considered here, subscription service ,

is the least time responsive service. In this variation, passengers

make regular trips to an acceptable destination (often only one or a

few locations are acceptable) and must book service in advance. Regu-

lar routes are established so that each subscriber is picked up either

at his/her door or at one of a series of checkpoints. Routes are

changed periodically to incorporate new service requests if capacity

exists. Subscription service, which offers fairly high vehicle pro-

9



ductivity, is most frequently used for work trips as in the Rochester/

Greece, New York- Kodak Park subscription service.

Table 1.1 presents a simple classification of the various DRT and

other transportation services in terms of time and space responsiveness.

Table 1.2 summarizes the operating characteristics of some of the

better-known demand responsive transportation systems.
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Table 1.1

Time and Space Responsiveness of Transportation Systems

Space
Time Fixed Flexible

Fixed Conventional
Transit

Carpool, Vanpool,
Subscription Bus,

Point Deviation

Flexible Jitney

,

Personal Rapid
Transit

Premium Taxi,

Private Auto,
Many-to-Many Dial-
a-Ride
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Characteristics

of

Selected

DRT

Systems
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1.4 The Need for DRT Planning Models

When new DRT systems were implemented in the past, little informa-

tion was available to help predict the demand for service. Most early

models, such as the M.I.T. simulation model (Wilson, Sussman, Wong, Higon-

net (1971)), predicted how a system would perform at assumed demand levels .

Demand levels themselves have usually been estimated based on judgment

and comparison with other DRT systems already operating.

DRT has often failed to meet expectations in many localities be-

cause of inaccurate forecasts of patronage. The overprediction of de-

mand has led to the demise of some systems, when local officials viewed

the system as a failure because it had not attracted the expected num-

ber of passengers. On the other hand, the underprediction of demand

can have even more significant consequences. For example, the failure

of the Santa Clara, California, system has been blamed, in part, on

"too much success," i.e., there were more passengers than the system

could handle. These failures were due to the lack of effective analy-

sis tools for planning and, in particular, the inability to forecast

demand

.

Demand prediction for a demand responsive transportation system is

more complicated than demand prediction for traditional fixed route

service, not only because little experience has been acquired with DRT

systems to date, but also for a number of other reasons inherent in the

service concept. First of all, fixed route systems serve only specific

corridors; so demand prediction requires consideration of only a limited

13



number of origin/destination pairs. Prediction of DRT patronage, on

the other hand, must be based on all potential origins and destina-

tions in the service area and may also require consideration of other

destinations which can be reached by the combination of DRT and rapid

transit or bus service. Perhaps even more important, however, is the

interaction of supply and demand. In a conventional fixed route tran-

sit system, level of service is not very sensitive to demand. For ex-

ample, a passenger's ride time is dependent only on trip length, bus

route, vehicle speed, and dwell time. Although level of service influ-

ences demand, routes and schedules can be considered the sole determin-

ants of level of service. In DRT, however, level of service is highly

dependent upon demand levels, and vice versa. A passenger's ride time

depends not only on the length of his/her desired trip, but also on

the number of other passengers served by the vehicle en route and the

location of their origins and destinations.

Thus, the demand for DRT service is a function of service quality

(i.e., level of service), which in turn is a function of demand. In

other words, demand and service relationships must be satisfied simul-

taneously.

If demand responsive transportation is to play its most effective

role in expanding public transportation services, it is important that

new DRT systems be planned carefully. There is a need to be able to

identify where DRT systems make sense, determine vehicle requirements,

estimate the quality of service, and determine how many will use the

service. This need led to the development of the demand/supply equilib-

rium modelling system for planning DRT systems described in this report.

14



1.5 Modelling Framework

Given the number of DRT service options that exist, it is not pos-

sible to develop a single model that can be used for planning all DRT

services. The problem is to identify the most significant DRT service

and to allow sufficient flexibility in the model to permit users to

approximate other DRT services. Many-to-many dial-a-ride service was

selected as the most common form of demand responsive service in oper-

ation and also because it is the most difficult to analyze with exist-

ing planning tools. For this system, demand prediction involves the

determination of trip generation, destination choice, and market share

(as opposed to demand prediction for a home to work subscription ser-

vice which involves only market share estimation). The quality of ser-

vice depends on a complex queuing process involving a wide range of

factors including demand. Thus, many-to-many service appears to be a

form of DRT service for which a comprehensive equilibrium model is

particularly desirable.

Feeder service can be provided as one element of many-to-many ser-

vice, as in Rochester, New York. Since feeder service is regarded as

an important future role for DRT, this option has been considered in the

model. In addition, shared-ride taxi service is generally provided in

the form of many-to-many service. Since there has been growing inter-

est in utilizing the private sector in the provision of public trans-

portation, an increase in the number of shared-ride services is likely.

Thus, it is also important to consider this option. The way in which

these options are represented in the model and the overall model structure

are described in the following section.
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SECTION 2

OVERVIEW OF THE DETAILED MODEL SYSTEM

2.1 Introduction

DRT systems are difficult to model, characterized as they are by

sophisticated services, a range of fares and fleet sizes which vary

widely both among systems and within any individual system over the

day. Any model for predicting the daily patronage on such transporta-

tion systems must of necessity simplify much of this complexity. The

aim of the model development is to simplify without distorting the

true causal mechanisms which determine why travellers do or do not

use demand responsive service.

The model described here (and in more detail in the appendices to

this report) was developed with two conflicting considerations in mind.

First, it is clear that existing models for predicting demand respon-

sive service patronage have sacrificed a great deal of behavioral con-

tent in order to achieve simplicity. They have used very limited data

(Arrillaga, 1973), relied on rules of thumb to adjust survey results

(Hartgen and Keck, 1976) ,
have adopted functional forms without suffi-

cient behavioral justification (Lerman and Wilson, 1973 and 1974), or

utilized models estimated on data from conventional transit systems and

used ad hoc parameter adjustments to reflect the differences (Pfefer and Stopher,

1976). (These methods are reviewed in Lerman, 1973, and Transport Development

Agency, 1975.) The model developed in this study is significantly

more detailed than previous attempts and incorporates a valid set of

behavioral relationships.
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A second consideration is that, because of the practical problems of

poor data and very limited time and resources, the problem of forecast-

ing DRT patronage must be simplified considerably. In addition, the data

potential users of the model are likely to have imposes a constraint on

the level of detail possible. Despite these limitations the model draws

on recent advances in travel demand prediction methodology to achieve a

model structure significantly different from previous models. This sec-

tion provides the reader with a general overview of the structure of

the model and a relatively non-technical description of each of its major

components

.

The models were based on two urban areas, Haddonfield, New Jersey,

and Rochester, New York, both of which had DRT systems on which data

were collected. Due to a small data sample and coding problems associ-

ated with the Haddonfield home interview survey, only the Rochester

data were used to calibrate the final set of models.* The Haddonfield

data did, however, provide an important starting point for the demand

model development. Model specifications tested on the Haddonfield data

permitted later efforts with the more complete Rochester data to be

better focused. Appendix A describes calibration results from both

data sets and their use in greater detail.

The next subsection of this section reviews basic equilibrium

theory upon which the model is based. This theory suggests that valid

*The Haddonfield data did not include trip destinations outside the DRT

service area except to note that they existed. Furthermore, Haddonfield
no longer had DRT service when this study was begun, so collection of

on-board survey data to supplement the home interview survey was im-

possible .
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patronage predictions for DRT services will require not only a set of

models for predicting demand, but also a capability to predict how well a

DRT system will perform under a given demand. Following this. Subsec-

tion 2.3 describes the overall structure of the model system, briefly

summarizing the functional submodels and their interaction. Subsection

2.4 is a non-technical description of disaggregate choice models, the

general demand modelling approach used in the study.

The following three subsections (2.5, 2.6, 2.7) focus on the sep-

arate components of the model system: the demand models (for both work

and non-work trips), and the supply model. In these subsections, only

a general description of the models is given, with more detailed, tech-

nical descriptions contained in Appendices A and B respectively. The

final subsection of Section 2 (2.8) describes how these components are

organized into a single model to predict DRT patronage and discusses

the types of forecasts which can be obtained from the model.
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2.2 Equilibrium in DRT Service

Demand responsive systems differ substantially from conventional

transit in a number of ways. For conventional transit, the estimation

of the level of service varaibles which may be present in a demand

model is usually quite straightforward given the specification of

transit routes, headways, etc. For example, in a fixed route bus sys-

tem, level of service measures such as wait time and ride time are de-

pendent principally on the headway, the route structure, the trip length

and the vehicle speed. Significantly, for a broad range of demand

these level of service parameters may be considered to be independent

of the actual level of ridership.* This makes it possible to estimate

patronage using only a demand model since there is little feedback be-

tween the demand side and the performance of the system.

Unfortunately, in demand responsive transportation systems the

most important level of service variables are heavily dependent on

ridership. Specifically, all service times, including wait and ride

times, depend to a great degree on the level of demand over typical

design ranges. This implies that to forecast demand (and also service

characteristics)
, both the supply and demand relationships must be

solved iteratively or simultaneously.

This situation can best be demonstrated by an example. For simpli-

city, assume that only one level of service characteristic (called "time")

*Clearly in heavily congested systems this independence breaks down, and
wait time in particular may become highly dependent on the actual level
of ridership. Similarly, when bus platooning becomes a problem, average
wait times depend on the extent of the unrealiability in headways.
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affects DRT demand. (In the actual forecasting model, wait time, ride

time, and cost are used.) In most bus systems the service, or conges-

tion, function is quite flat, as indicated in curve S in Figure 2.1.
BUS

Demand responsive transportation, however, has performance characteris-

tics similar to curve S , i.e., time varies significantly with demand

over the entire range of usage. In this simplified example, the same

demand curve (labelled D in Figure 2.1) is assumed for both systems.

The true equilibrium point for DRT is indicated as E with asso-

ciated demand D ; however, if service considerations are ignored
I RUB

(i.e., a flat supply function were used for DRT similar to S nTT „) , the
bUb

forecast equilibrium point would be E
,
and the associated demand would

be D . Thus, in ignoring equilibrium effects, an error of

introduced. This error can be compounded in actual practice when we

introduce the full set of level of service variables. The essential

problem is that for DRT systems, this error can be quite large .* With-

out a supply model, there is a real danger of even a well-formulated

DRT demand model leading to poor forecasts. This danger is accentuated

in the case of demand responsive transportation systems because the

performance relationships tend to be fairly complex.

The model developed in this study eliminates this problem by sim-

ultaneously solving both the service and demand relationships to yield

forecasts of service quality and demand level at equilibrium. The model

also accounts for the fact that the number of vehicles operating may

*This problem is of course not limited to DRT analyses. It applies to

any system in which there is congestion, i.e., in which level of ser-

vice (supply) is sensitive to demand levels over the range of rele-
vant designs (Manheim, 1976).
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FIGURE 2.1

EQUILIBRIUM FORMULATION
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vary over the day, that different service and demand curves pertain in

different time periods. This is represented by permitting the user to

define distinct periods of operation ,
during which the fleet and its

average operating characteristics are assumed constant. The user can

define an arbitrary number of such periods, over the day, each of ar-

bitrary duration; an equilibrium is found for each period.

The model divides all travel in the area being analyzed into two

types of trips, work and non-work. DRT patronage by each trip type is

forecast with a separate demand model. The reason for this division

of trips lies in the fundamental behavioral differences between work

and non-work travel. Work trips are typically made on a regular basis

to known destinations and can be assumed to be fixed in total number.

DRT service can only divert work travellers from their current mode.

On the other hand, non-work trips are more flexible; they are not made

every day and in general there is substitutability among destinations.

DRT service may not only cause modal shifts but may also induce travel-

lers to change destinations and frequencies.

Equilibrium between service quality and demand in any period is

established by summing the work and non-work trips and solving the DRT

service relationship simultaneously with this total demand. In actual

practice, these equations are too complex to solve analytically so an

iterative approximation procedure is used.
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2.3 Structure of the Model

In order to illustrate the overall structure, consider first a sin-

gle period of operation. The model user specifies the values of the var-

iables which describe the service area characteristics, as well as the

start and end times for the operating period. These variables can be

grouped into the following categories:*

1) Study area characteristics

zonal system (coordinates of zone centroids)
list of zones not served by DRT
zonal areas
zonal populations
zonal employments
work trip matrix
socioceonomic characteristics distributions (auto availability,
household size, number of residents over 16 years old, num-
ber of residents over 64 years old)**

work trip departure time distribution**

2) DRT system characteristics**

fleet size during period
vehicle type (passenger car or bus)

free vehicle speed
dispatching system (computer or manual)
fare per passenger
time required for passengers to get on/off vehicle

3) Alternative mode characteristics

times and costs for driving
shared ride auto occupancy**

Note that the study area characteristics can include a list of

zones not served by the demand responsive system. These external zones

*Some of these variables are constant over the entire day and need not

be respecified in each period; some variables have preset default val-

ues. For example, data about the socioeconomic distributions at the
zonal level can be developed by the model from much simpler data about
the entire service area. More detail about the input requirements is

given in Subsection 3.2 and in Appendix C, the Program Documentation.
**These variables have preset default values.
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serve two functions. First, they may be reached by travellers who use

DRT and line haul transit; such trips are part of the DRT demand.

Second, they can be alternative destinations for non-work trips. A

DRT system may divert some people from these destinations, thereby in-

creasing daily DRT patronage from what would be predicted if such

zones were ignored.

Given a DRT service area, the model executes a series of submodels

as depicted in Figure 2.2. As illustrated, the demand for DRT service

is comprised of work trips and non-work trips. The total demand from

these two demand submodels is used as an input to the service submodel,

while the level of service from the service sector is, in turn, an in-

put to both demand submodels.

In practice, the service and demand sectors are executed itera-

tively, each using the output from the other. The resulting solution

includes information about DRT vehicle productivities, total DRT patron

age, average DRT wait time and average DRT ride times. Additional in-

formation about trips on other modes, DRT market share, and trip dis-

tribution is also available.

Both the number of zones and operating periods is user specified,

but the computational requirements of the model increase in proportion

to the number of periods, the number of iterations used in the equili-

bration procedure, and the square of the number of zones. The use of a

large number of zones also requires a great deal of core storage, there

by increasing computer costs. Finally, the data required increase with
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FIGURE 2.2

GENERAL FLOW OF THE MODEL SYSTEM
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the number of zones. For these reasons, the model system was designed

for zones of roughly census tract size,* though analyses on large ser-

vice areas will require some grouping of tracts. The total number of

zones should ideally be less than twenty** and those users contemplating

considerably larger problems should carefully consult the user's manual

in Appendix C.

*Census tracts contain, on the average, about 4,000 inhabitants.

**In Davenport and LaHabra, 22 and 15 zones were used, respectively.
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2.4 The Demand Methodology: Disaggregate Choice Models

In order to clearly present the separate demand components of the

model system, the demand modelling methodology is first briefly re-

viewed. There are four major characteristics of the demand methodology.

First, all the demand submodels in the model system are disaggregate

choice models ,
which means that they focus on the trip-making behavior

of individual travellers; in contrast, aggregate models represent the

behavior of groups of individuals.

Disaggregate models offer a number of significant theoretical and

practical advantages over their aggregate counterparts. The most crit-

ical of these advantages are as follows:

1) Disaggregate models, because they consider actual individual
travel behavior, are much more likely to produce behaviorally
valid models than are aggregate models.

2) Disaggregate models are not based on a single geographical
coding system. Consequently, as recent studies by Atherton
and Ben-Akiva (1976) and Pecknold and Suhrbier (1977)
have indicated, models estimated on disaggregate data are
more likely to be geographically transferable than their
aggregate counterparts.

3) Disaggregate models require considerably less data for estima-
tion than do aggregate models. This was particularly signifi-
cant in this study because available data samples were quite
small. Furthermore, DRT ridership in these samples was low,
and it was essential to maximize the efficiency with which
this information was used.

4) Disaggregate models are much more statistically reliable than
aggregate models because they contain no within-group varia-
bility; it has been shown that within-zone variability is often
greater than between-zone variability. In aggregate models,
this within-zone variability is lost by using zonal averages.

The second aspect of the demand forecasting methodology used here

is that it is choice- oriented

.

By this it is meant that each traveller
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is making a selection of one of a set of possible options. For example,

in the work trip model each worker was represented as having a choice

among driving alone, sharing a ride with someone, and taking DRT,

either as an access mode where relevant or as a direct mode of travel.*

For any trip, only one mode of travel can be selected. In addition, in

the more complex non-work models, travellers select not only their mode

of travel, but also their destination.

Obviously, it is impossible to predict precisely what any single

traveller will choose to do. Disaggregate choice models explicitly

recognize this by focusing on the probability of each decision being

made. In the models most generally used, every alternative available

to a person typically has a non-zero probability of selection, but some

alternatives may be infeasible for some individuals. For example,

travellers who lack a driver's license cannot drive alone; they are

restricted to making some ride sharing arrangement if they want to

travel by private automobile.

While there are a number of different disaggregate choice models,

the one used in this study (and the one most widely used in transporta-

tion planning) is the multinomial logit model. The theory behind the

development and calibration of this model is quite complex; however,

its basic logic is straightforward. Every alternative available to an

individual has associated with it some measure of desirability, termed

*Use of fixed route bus in the available data was too low to include

it as a feasible option. The methodology used (the multinomial logit

model) has the fortunate property that such an omission does not affect
the calibration results.
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a utility, computed as a function of both the attributes of the altern-

ative and a set of model coefficients.*

As a simple example of the logit model, suppose the utility func-

tions for three modes of travel are as follows:

V = 1.0 - .2 (drive alone travel time)
L/A

V = .5 - .2 (shared ride travel time)
SR

V = -.2 (demand responsive travel time)
DRT F

where V ,
V

, and V are the drive alone, shared ride and demand re-
DA SR DR1

sponsive transportation utilities respectively.** The constants in each

equation represent a "pure alternative effect," or bias either towards

or away from the mode depending on whether the term is positive or neg-

ative. The level of service coefficients represent the effect of dif-

ferences in measured service quality.

In the multinomial logit model, the probabilities of someone select-

ing each of the three alternatives are then:

Prob (drive alone) = —^——
DA

,

V
SR

,

DRT
e + e + e

*The coefficients are calibrated using data from observed choices and
are built into the model system. The actual values of the coefficients
and the procedures used to obtain them are described in Appendix A. For
the purposes of this exposition, assume that a statistically valid set

of coefficients exists.

**These utility functions are hypothetical examples. More realistic forms
include out-of-vehicle time, cost, auto ownership, household size and
a range of other factors. In addition, many of these variables, such

as autos per household member or cost divided by income, are combina-
tions of separate factors.
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Prob (shared ride) = —-——— —

—

V
DA

,
SR . DRT

e 4- e + e

Prob (DRT)

V
DRT

e

V V
SR

,

DRT
e + e

In the following two subsections, the description of the demand

models will focus only on the factors which enter into the various

utility functions; the functions themselves and their coefficients

are described in Appendix A.
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2.5 The Work Trip Demand Model

The work trip demand model begins operation in any time period by

using two of the inputs, the daily work trip origin-destination matrix

and the work trip departure time distribution, to compute the total num-

ber of work trips being made within the area under consideration during

the operating period.

Suppose, for example, that the specified operating period was from

10:00 AM to 2:00 PM, and that 10% of all work trips were made in that

interval. Each entry in the daily work trip matrix would be multiplied

by .10* to represent the pool of potential DRT work trips in that period.

Note that those trips which begin in the operating period but might not

terminate within it are included in the pool.

The work trip demand model then divides this pool of travellers

between the various available modes by applying a logit mode choice

model on an origin-destination basis for every socioeconomic group.

During each iteration of the equilibration process, the model system

takes each origin-destination pair and for each socioeconomic group

computes the utility of each mode. These utilities are then used in

the logit model to estimate the number in each socioeconomic group using

each mode. The total number of DRT work trips from an origin i to des-

tination j is determined by

*Note that this distribution is preset in the model with default values
derived from a study of travel time of day (Peat, Marwick & Mitchell,
1972). The user can override these default values if desired.
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£ [Prob (member of group uses DRT) ] x
all socioeconomic [Number of group members making work

groups trips from i to j

]

At each iteration the output of the submodel is a DRT work trip origin-

destination matrix for the operating period.

While the original model was calibrated using four modes (drive

alone, shared ride, and DRT, either as a direct mode or as access to

linehaul transit), it is possible to extend the model to include

fixed-route bus by adding an appropriate utility function to the de-

mand model. (The software is equipped to accept such inputs, and

users interested in this type of application are referred to Appendix C)

.

Table 2.1 presents the variables used in the utility functions to

determine the choice probabilities. The actual structure of the util-

ities and the calibrated coeficients are presented in Appendix A.

Note that Table 2.1 does not include time reliability. All at-

tempts to include variables representing this factor produced coeffi-

cient estimates which were statistically insignificant, and/or had a

counter-intuitive sign. Appendix A discusses the reasons for this in

somewhat greater detail. However, some of the major problems were:

1) lack of adequate data - Measurement of DRT reliability on
an origin destination basis requires a fair number of re-
peated observations of each trip. Even after using many
days of DRT data, very few origin-destination pairs had
enough trips to estimate reliability.

2) high collinearity - In any DRT system, time reliability
measures tend to be highly correlated with trip time; time
variance on long trips is higher than on short trips. With
such high collinearity, statistically significant coeffi-
cients for both travel time and variance of time are diffi-
cult to obtain.
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MODE VARIABLES

Drive Alone direct driving time

walk time to and from parking

out-of-pocket cost (including parking)

autos per household member over 16

Shared Ride direct driving time + ride sharing
penalty

time to park and walk both at origin
and destination

out-of-pocket cost per shared ride
group member

autos per household member over 16

DRT DRT in-vehicle travel time

DRT wait time

DRT fare

Table 2.. 1 - Variables in the Work Trip Model
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3) lack of variation - For any DRT system, the amount of variation
in any reliability measure (aside from collinearity with travel
time) is likely to be small. Thus, without taking home inter-
views or other surveys from many different DRT systems, each
with different levels of reliability, it is difficult, if not
impossible, to measure the effect of reliability on demand.
Furthermore, even if survey data from many sites were avail-
able, problem (1) above would make the augmentation of such
data with adequate level of service information prohibitively
expensive

.

For these reasons, measures of time reliability on DRT were dropped

from the final model specifications. In addition, a number of modifica-

tions to the final work trip model were made in order to reduce the

amount of data needed to forecast with the model and to resolve some

statistical problems encountered in the work trip model calibration.

In particular, because of either collinearity problems or a lack of

variation in the data, the cost coefficient never became significant.

In order to introduce cost in the model and have a satisfactory model

for forecasting purposes, the work trip model was constrained by using

empirical results on cost coefficients from other modelling efforts.
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2.6 The Non-Work Trip Demand Model

Prior models of non-work travel demand have generally overlooked

two important conceptual difficulties. The first of these is the

occurrence of complex tours; a series of trips with more than two legs,

beginning and ending at home (i.e., tours other than home-destination-

home) . Trip tours with multiple destinations can be more than 50% of

the total number of trips taken during a day (Adler, 1976). The second

difficulty is the phenomenon of mode changes in either a simple or com-

plex tour. For example, a passenger might take DRT from home to his/her

first stop, fixed-route bus to a second stop, and share a ride with a

friend to go home.

These phenomena are particularly important for non-work trips, and

since this is a primary market for DRT systems, it was felt necessary

to develop a model which acknowledged their existence.

The model developed is a stochastic simulation . The service area

population is represented by a list of so-called "entities," or pseudo-

individuals, each associated with some fraction of the non-work trip-

making population. Within any period, the trips made by each entity

are determined by a random process defined below, and the resulting

trip totals are appropriately expanded to the entire population. The

precision of the simulation can be controlled by the user by selecting

the desired number of entities; the more entities simulated, the greater

the precision of the forecasts.

The conceptual basis of the model can be captured by considering

35



a potential trip-maker who begins the day at home. When (and whether)

to make a trip can be represented by a distribution of dwell times at

home. This distribution is defined as starting in the morning when all

potential travellers are at home, and describes the time of the first

departure from home for members of a socioeconomic group. The distribu-

tion also includes some probability of the individual staying at home

for the entire day and thereby not making any trip. If, however, the

individual chooses to make a trip, he/she must then select among all

possible destinations and modes. This decision can be represented with

a joint disaggregate choice model in which all possible mode and des-

tination combinations are available alternatives, one of which is selec-

ted. Having arrived at some destination, the decision on when to leave

can be represented by another distribution of time, this one describing

how long people stay at locations other than home. After selecting

a departure time, the individual again makes a mode-destination de-

cision, where the destination decision may or may not be to return

home. If the traveller returns home, the entire process begins again

with only one exception; the distribution of time at home is different

if the traveller has already left home at least once than if he/she has

not left home. Thus, time at home is described by two distributions

in the model.

Obviously, this modelling approach is a simplification of the true

behavioral process. Travellers do not necessarily decide on each leg

of a complex tour step by step; rather, they may plan an entire trip as
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a single entity. Models which account for more complex tour choice

mechanisms are not computationally feasible. The approach developed

in this study represents a major improvement over previous practice,

and is a feasible modelling strategy for a reasonably small number of

zones

.

The model logically involves the five following separate sub-

models :

1) the distribution of time of the first departure from home;

2) the distribution of dwell time at non-home locations;

3) the distribution of dwell time at home after returning from
a trip tour;

4) the joint mode and destination choice model for trips start-
ing at home; and

5) the joint mode and destination choice model for trips start-
ing away from home.

Clearly, the three time distributions are unlikely to be the same; for

example, the average time at home will be greater than the average time

away from home. In addition, the shapes of the distributions are very

different. The mode-destination decision will depend on the individual's

present location. An individual away from home clearly has a high prob-

ability of choosing home as a destination. On the other hand, return-

ing home is obviously an irrelevant alternative when one is home to be-

gin with.

Within the analysis period, time is, for convenience, considered

in discrete intervals, as the individual moves from time interval to

to time interval, he/she makes various travel decisions. This process
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for a particular individual is represented diagrammatically in Figure

2.3 for an analysis period of 20 intervals and a service area of 10

zones. The individual lives in zone 5 and begins the analysis period

at home.* When to make a trip is stochastically determined by drawing

from the distribution of times at home. In the figure, the outcome of

this random draw is depicted by having the individual leave zone 5

(home) in interval 2. The trip destination is also a stochastic pro-

cess which is an output of the at-home mode-destination model. (Note

that for the sake of clarity the modal decision is not represented in

the diagram.) The figure shows that the individual selects zone 8 as

his/her destination and arrives there after travelling for three time

intervals. (The journey requires a travel time which varies with choice

of mode and destination.) Having reached zone 8, the individual remains

a length of time stochastically determined by the distribution of times

away from home. After deciding to depart in time interval 7, the away-

from-home destination model probabilistically determines the next destin-

ation. The individual in the diagram continues the tour by proceeding to

zone 2 and then goes home in accordance with the appropriate choice

models. The simulation process continues until the elapsed time is be-

yond the duration of the specified operating period. When this occurs,

the current location of the individual and the time of the next trip are

*The period described here is the first of the day, so all travellers are

initially assumed to be at home. In later time periods, people will be

at various non-home points, depending on the simulated outcome of their
prior travel choices.
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AN INDIVIDUALS TRAVEL PATTERN WITHIN A

SINGLE ANALYSIS PERIOD
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stored and used for later periods.*

For computational reasons, every trip to a destination is counted

as partial trips on all the available modes by computing the probability

the simulated individual will choose each mode. To do this, the model

uses the joint mode and destination choice probabilities to derive the

various modal choice probabilities conditional on the destination choice

(as determined by drawing from the joint mode and destination choice prob-

ability distribution). These probabilities then become fractions of

simulated trips.** Since the amount of time needed for the individual

to make the trip depends on which mode he/she would take, a random draw

of the times on the available modes is made, where each mode's probabil-

ity of being used is based on the choice model prediction.

Table 2.2 presents the variables in the model which affect each

of the five components of the non-work trip demand submodel. Distribu-

tions of time at home and away from home were developed by using observed

data from one of the calibration cities, Rochester, New York, and fitting

plausible functional forms for various socioeconomic groups. A series

of statistical tests were performed to determine whether various socio-

economic groups have distributions with significantly different means,

and where appropriate, some groups were combined into single distribu-

tions. Except for the dwell time away from home, these distributions

vary by auto ownership level and age of the traveller.

*There is no guarantee that travellers will reach home by the end of the

day. However, this may be realistic and is of little practical signifi-
cance in any case.

**This was necessary because the choice probability for DRT is generally
small, and the number of DRT trips in a simulation without this modifi-
cation would be very small unless a large number of simulations were
made. In the validation tests, for example, the number of required sim-
ulations would have to have been increased by an order of magnitude to

obtain the same level of precision.
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MODEL COMPONENT/ CHOICE VARIABLE (S) AFFECTING CHOICE

Distribution of time of first auto ownership
departure from home age of resident

Distribution of time of sub- auto ownership of household
sequent departures from home age of resident

Distribution of times away
from home

auto ownership

Mode and destination choice auto ownership of household
starting at home number of household members

greater than 16 years old
in-vehicle time for mode/
destination combination

out-of-vehicle time for mode/
destination combination

cost of mode/destination
combination

population of destinations
employment of destinations
area of destinations

Mode and destination choice same as above, but with separate
starting away from home term representing the alternative

of going home

Table 2.2 - Variables in the Non-Work Trip Model
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Two joint choice models (one for trips starting at home, and the

other for trips starting anywhere else) were also calibrated using the

Rochester data base. Due to the very small sample in Haddonfield and

the lack of trips to places outside the DRT service area, the Haddon-

field models, while generally consistent with those from Rochester,

were not used for the final version.

Unlike Table 2.1, the modal utility functions are not listed in

Table 2.2. This is because, while the work trip model only has three

alternatives available for any traveller, the non-work model evaluates

the utility of every available mode/destination combination. Refer-

ences in Table 2.2 to variables such as "out-of-vehicle time for mode/

destination combination" imply that every alternative is identified as

a destination reached by a mode, and the corresponding variable in

the model is the out-of-vehicle time for that trip. All times and

costs in the non-work model are defined the same way as in the work

trip model, and driving alone is assumed to be available only to li-

censed drivers residing in households owning automobiles.
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2.7 The Service Model

The service model is a set of equations which relate wait and ride

time on DRT to various system parameters. In developing the model,

care was taken to ensure that all relevant variables describing the

DRT system were included, and it was calibrated over a wide enough

range for it to be reliably used for any reasonable system.

The model predicts wait time, defined as the time between the

call for service and the arrival of the vehicle, and ride time, the ac-

tual time spent on board a DRT vehicle. Experiments with the M.I.T.

simulation model indicated that mean system wait time could serve as a

surrogate for individual passenger wait time (see Appendix B) . Indi-

vidual passenger ride time was found to be a linear function of trip

distance

.

Inputs to the service model, discussed in detail in Section 3, in-

clude the following:

1) demand rate (passenger demand per hour)

2) service area size (square miles)

3) load and unload times (minutes)

4) trip length* (miles)

5) mean trip length*

6) street network adjustment factor (ratio of street distance
to airline distance)

7) vehicle speed (miles per minute)

8) vehicle fleet size

9) weights on in-vehicle and out-of-vehicle times reflecting
dispatching system parameters

10) vehicle fleet size adjustment factor

11) group size adjustment factor.

*Used for ride time prediction only.
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Demand density for a given operating period is the output of the

two demand submodels. Service area size is developed within the soft-

ware by summing the areas of analysis zones, a user supplied input.

Load, unload times are the average time it takes for a passenger to en-

ter and leave a vehicle respectively and are supplied by the user.

Trip length is supplied by the software for a given trip; a built-in

program develops trip length based on user supplied zone centroid coor-

dinates. Mean trip length ,
the average length of DRT trips that are

taken, is an output of the demand model and an element of the equilibra-

tion process. The street network adjustment factor is a user supplied

input, used by both the supply and demand models. Vehicle speed is a

user supplied input that can be set either at the same level as automo-

bile speed, or at any desired level. Vehicle fleet size is a user sup-

plied input that can be varied from period to period. The dispatching

system parameters are user supplied inputs, described more fully in

Section 3, which reflect different types of dispatching systems. The

vehicle fleet size adjustment factor ,
considered only for wait time cal-

culation and explained in Appendix B, is supplied by the user. The

group size adjustment factor is a representation of the average number

of persons who comprise a single trip.* This factor is supplied by

the user; different values can be supplied for work and non-work trips.

Vehicle capacity is not an input parameter, as discussed in Appen-

dix B. However, in order to be able to model shared ride taxi service

*In many cases two or more persons will travel together. However, as far

as a DRT vehicle is concerned, a group of persons travelling together
is equivalent to a single trip since capacity is virtually never exceeded.
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as well as dial-a-ride service using larger vehicles, two sets of model

coefficients are provided, as described in Appendix B. One set applies

to systems using standard auto-like vehicle, and the other applies to

larger vans or buses.
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2.8 Equilibrium

The process by which the service submodel and the two demand sub-

models are brought into equilibrium is conceptually straightforward.

In any period of DRT operation, the model system is initialized with

some value of DRT demand, expressed as a modal split for work trips

and a total non-work ridership. This initial DRT ridership is used as

an input to the service model. The predicted DRT level of service is

then input to both the work and non-work demand procedures, which then

produce a new total DRT patronage forecast. This iteration between

the service and demand submodels continues until the change in demand

from one iteration to the next is below a pre-specified tolerance level.

The model finds the equilibrium for each period using the prior period's

result as an initial state.*

A modification to this procedure was made to improve the speed of

convergence and reduce problems of oscillation in the equilibration. A

damping procedure was developed which placed both upper and lower bounds

on the possible vehicle productivity (passengers served per vehicle

hour). These initial upper and lower constraints are quite loose. (De-

fault values are 12 and 2 passengers per vehicle hour respectively.)

However, as the forecasting process proceeds, the constraints become

tighter so that they reduce the range of movement of the productivity.

The demand level to be used in the service model at any iteration

is determined by a two step procedure. First, if the unadjusted fore-

casts violate either of the current bounds, it is set equal to the vio-

*As discussed above, the non-work trip demand submodel requires the lo-

cation of each simulated entity from the prior period.
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lated bound. Then, in order to reduce oscillations in the forecast,

the bounded forecast is averaged with the adjusted forecast from the

last iteration.

For example, suppose the initial demand for a two hour period in

which five vehicles are operating was assumed to be eighty passengers.

This implies a productivity of eight passengers per vehicle hour.

Since this violates neither the upper or lower constraint on productiv-

ity, it is left unaltered. The service model is then invoked to fore-

cast the level of service (wait times and ride times) assuming eighty

DRT passengers in the period. The resulting level of service is then

input to the work and non-work demand submodels.

Suppose the resulting demand forecast was only eight travellers,

implying a new, unadjusted productivity of one passenger per vehicle

hour. If the default bounds on productivity are being used, this unad-

justed productivity violates the lower bound, so it is reset to the lower

bound value of two.

It is at this point that the averaging procedure is applied. Rather

than using the productivity of two passengers per vehicle hour as an in-

put to the next iteration of the service submodel, the current value is

averaged with the previous productivity of eight, resulting in an adjus-

ted productivity of five. Furthermore, since the previously estimated

demand level of eighty was clearly too high, the upper bound on produc-

tivity is lowered to eight.*

*The fact that a demand of eighty passengers was too high can be inferred
from the results of the following iteration. A demand of eighty produced
service level forecasts which were so low that the next demand fore-
cast fell to only eight. Had the demand forecast gone up it would have
indicated that the forecast of the eighty passengers was too low . Equilib-
rium is defined as the demand and service levels at which there is no
change from one iteration to the next.
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The procedure continues until either the change in productivity be

tween iterations is very small or a pre-specif ied maximum number of it

erations is performed. In general, the procedure terminates with the

adjusted lower and upper bounds fairly close to one another so that the

user can infer the reasonable range of forecasts. It is recommended

that users do not attempt to achieve a very close approximation to

equilibrium, since doing so will require a large number of simulated

entities and iterations. Rather, users should run the equilibration

procedure for about four to six iterations and estimate the final pro-

ductivity based on the series of constrained and unconstrained pro-

ductivities. An example of this method is given in Section 4, Valida-

tion.
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SECTION 3

USING THE DETAILED MODEL SYSTEM

3.1 Introduction to Model Data Needs

The detailed model system described in the previous section provides

a flexible and general tool for aiding in the design of DRT systems. How-

ever, in order to utilize it effectively the user must provide a reason-

ably accurate description of the problem at hand in a form consistent

with the model's data requirements.

A discussion of the particular format and input requirements of the

model system is reserved for Appendix C, the Program Users' Manual. The

objective of this chapter is to outline the specific data items required

to run the model system and to present some of the options open to the

model user. In addition, an extended example of how a problem can be

organized into a form which can be analyzed with the model is presented.

In general, the user can supply all inputs to the submodels; how-

ever, default values have been included in the model wherever possible.

This allows the user to concentrate on those variables which are most

important in the design of DRT systems. Also, the user who is unfamil-

iar with the model system does not have to be concerned with understand-

ing and providing the full array of possible inputs.

At the simplest level of detail, the user must supply service area

characteristics and model parameters including:

1) zonal data including:

coordinates of centroid
area size

employment
population
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2) a daily origin-destination (0-D) work table

3) the number of non-workers over the age of 16 in the service area

4) level of service for non-DRT modes which are available including

in-vehicle times on an 0-D basis

out-of-vehicle times on an 0-D basis
fares on an 0-D basis or as an average system fare

5) the DRT fare structure, either in 0-D form or as a single sys-

tem average

6) number of vehicles in service during each operating period and
their capacity

7) number of analysis zones served directly by DRT and the number
of zones available through a feeder connection

8) beginning and end of each analysis period

9) initial estimate of DRT patronage

10)

desired precision of the model results.

Users who are familiar with the model or who have special problems

for which the default values are inapplicable might consider overriding

the default values used for other variables including:

1) percent of total population over the age of 64

2) auto occupancy of shared ride trips

3) work trip distributions by time of day

4) average number of people riding together
systems

in groups on the DRT

5) effective vehicle fleet size adjustment factor

6) vehicle speed for DRT

7) load and unload delays for DRT

8) dispatching system parameters.

Finally, there is a third level at which the user can make adjustments

50



to the model system. The data at this level are generally very difficult

to generate, so it is expected that most users, although they have the

option, will never have occasion to override the default values for the

following

:

1) household size and auto availability distribution of popula-

t ion

2) distribution of dwell times at home and away from home for
persons making non-work trips

3) percentage of residents who make non-work trips in a given day.

The following four sections discuss these inputs in much more detail.

These sections are organized according to the functional relationships

between the data items.
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3.2 Data Needs: Run and Period Control Parameters

As discussed in Section 2, the user exercises control over the pro-

gram at the level of the entire run as well as for each period being

analyzed. The parameters at the user's disposal for this purpose are

described below.

1) Modal Availability

The user can specify which modes are to be included from among the

four basic modes available (drive alone, shared ride, DRT, and regular

transit bus). Of course, the availability of a mode implies the need

for level of service data associated with that mode. (See Subsection

3.4, Demand Model Inputs, for a discussion of level of service.) Ad-

ditionally, the user can indicate the existence of a linehaul service

running out of the service area by specifying external zones. When

linehaul service exists it implies access by driving alone, sharing

rides, and DRT, and whatever subset of those three the user specifies.

Even though a mode is generally available, it can be unavailable for

certain periods of the day or for certain 0-D pairs. (See Subsection

3.4 for further discussion of this feature.)

2) Precision of Simulation Model Results

The precision of the non-work trip simulation can be improved by in-

creasing the number of individuals, or entities, simulated. Using more

entities, means that the core and CPU time required will also increase.

A satisfactory range for this value is from 500 to 1,000 entities with

larger numbers of zones requiring higher values. Users should recognize
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that higher precision is achieved at the expense of increased computation

cost

.

3) Definition of Analysis Period

The user defines his/her analysis periods by specifying a series of

inputs for each such period. Periods must not overlap and they must be

contiguous in order for the non-work model to make sense. The user de-

cides how operating periods should be structured, based on the following

considerations

:

a) Separate periods are required when a system characteristic
changes (such as vehicle fleet size) , when the level of ser-
vice for a competing mode changes (such as bus level of ser-
vice changing from peak to off-peak)

,
or when the demand

pattern changes (end or beginning of the work trip peaks).

b) Separate periods are warranted if the user wants detailed
results by time of day.

c) Some periods may be superfluous if they have identical char-
acteristics to others previously run.

d) The greater the number of periods used, the greater the cost
of running the system.

4) Convergence Criterion

Equilibrium is reached each period by iterating between supply and

demand, and as the number of iterations increases so does the precision

of the results. The user controls this process by setting the maximum

number of iterations to be performed as well as an error limit. When

the built in error measure reaches the limit specified by the user, the

process is terminated. The error measure used in an "average squared

differences" measure defined as:
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3.3 Data Needs: Service Area Description

At the simplest level of detail, the user must describe the DRT

service area and any external zones by supplying the following:

1) Selection of Internal and External Zones

The user should select a set of zones based on census tracts or

about the size of census tracts. The zones should be grouped according

to whether DRT service is available in them or not, and those with ser-

vice should be assigned the lowest zone numbers. All zones not served

directly by DRT should be assigned zone numbers starting with the first

unused zone number. As discussed in Section 2, the total number of

zones to be considered should be kept to a minimum because of the large

cost of analyzing more than about twenty zones. In addition, the cost

or preparing data increases dramatically as the number of zones in-

creases .

2) Definition of Work Trips and Non-Work Population

The user must specify a home-to-work origin-destination trip table

as a basic input to the work model. A person who lives in Zone A and

works in Zone B is represented as a single 0-D movement from A to B.

This matrix is internally reversed after 12 noon to account for work to

home trips. Another basic input (to the non-work model) is the number

of people who are candidates for making non-work trips. The number who

actually do make non-work trips is predicted by the model. Candidates

are defined as the number of non-workers living in the area served by

DRT who are older than 16 years.
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3) Distribution of Work Trips by Time of Day

The work model uses a distribution of work trips by time of day to

determine what fraction of work trips in each 0-D cell are made during

each analysis period. The user can override the defaults by supplying

different values for this distribution. This input can also be used to

"turn off" the work model during particular periods of the day by setting

the fraction of trips to zero. This may be appropriate when DRT service

is not directed towards workers or when work trips are so insignificant

that the user simply wishes to ignore them.

4) Definition of Zonal Characteristics

For each zone the user must specify the following data:

a) Zonal area in units of square miles
b) X and Y coordinates of the centroid of the zone in miles*
c) Zonal employment
d) Zonal population

The user may also override any of the service area default values

previously defined.

5) Socioeconomic Characteristics of the Residents of the DRT
Service Area

The model system requires information about three socioeconomic var-

iables: autos per household, persons over the age of 16 per household,

and the percent of the population over the age of 64. The user can in-

put areawide distributions for each of the first two. These distribu-

tions are used to create market segments that have different auto avail-

ability because auto availability is an important factor in both the

work and non-work models. The information about the percent aged is

used in the dwell time distribution component of the non-work model.

*The setting of the point (0,0) in the coordinate system is arbitrary
and does not affect the forecasts.
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6) Dwell Time and Departure Time Distributions

The departure and dwell time distributions such as those which are

provided as defaults in the model system are not likely to be available

to the user except when a very detailed data base such as a home inter-

view survey is available. Even then, a substantial amount of processing

may be involved. However, if a user has this information it can be in-

put or compared to the distributions presently in the system. The func-

tional characteristics of the distributions are discussed in Section 2.

A detailed description of the structure of these distributions is pre-

sented in Appendix A.*

*The distributions used were obtained from an analysis of Rochester data
and are representative of residents in medium density suburbs with a

fairly heterogeneous population mix.
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3.4 Data Needs: Supply Model Inputs

As discussed in Section 2, certain outputs of the demand model serve

as inputs to the supply model, while other supply model inputs are user

specified. These inputs describe service area characteristics and DRT

system characteristics.

The only service area characteristic that can be input by the user

is the street network adjustment factor, since area size is computed by

the program from other inputs. As noted in Section 2, the street net-

work adjustment factor is the ratio of street distance to direct dis-

tance for an average trip. A rectangular grid system has an adjustment

factor of 1.273; i.e., in a perfect grid, the average street distance

between two points is 1.273 times the direct airline distance. In more

realistic situations, the street adjustment factor can be calculated by

selecting random trips and using a map to plot actual routes. For most

communities this ratio will be in the region of 1.2 to 1.4, depending on

the extent of cul-de-sacs, one way streets, through streets, etc.; for

areas which have natural barriers (like rivers), the value may be

slightly higher. A default value of 1.3 has been incorporated in the

model

.

The following characteristics of the DRT system are the design

parameters over which the user of the model system has some control

:

1) Vehicle Fleet Size

Vehicle fleet size can be set at any value by the user, and can

be set to different values for different time periods.
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2) Effective Vehicle Fleet Size Adjustment Factor

System wait time is impacted by the extent to which vehicles enter

and leave service throughout the day for driver breaks and reliefs or

ends of vehicle operation. As far as wait time is concerned, there is

an effective vehicle fleet size which is smaller than the actual vehicle

fleet size. This concept is discussed in detail in Appendix B. The

effective vehicle fleet size adjustment factor would be set to 1.0 for

an idealized system in which vehicles are in continuous service.

There has been no concrete methodology developed to compute the

adjustment factor for an average system. However, simulation experi-

ments comparing predicted and actual DRT system performance suggest

that the factor would generally be in the range of 0.7 to 1.0, where

the low end represents a system where vehicles enter and leave service

frequently. A default value of .85 has been built into the model.

This value is probably suitable for most real world situations.*

Since the effective vehicle fleet size adjustment factor can be

varied for different time periods, it is possible to set it to one for

short periods where vehicles do not leave service, and to less than one

for longer time periods.

3) Vehicle Speed

Vehicle speed, the average speed while in motion, is a function of

the type of vehicle being used, local topography and local traffic con-

*The distance that the vehicles have to travel to the garage or other re-
lief points is also a factor. Furthermore, different relief policies
affect this in different ways. For example, dynamic relief, in which
drivers are brought to the vehicle while it is in service will have less
of an impact. For a more complete discussion of this see Wilson (1975),
"The Effect of Driver Reliefs on Dial-a-Ride Performance."
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ditions. In many cases it will be identical to average auto speed, al-

though if large vehicles are being used the DRT vehicle speed would

probably be somewhat lower. Most existing systems have vehicle speeds

in the range of .18 to .32 miles per minute. A default value of .25

miles per minute (15 miles per hour) has been built into the model

which can be overridden by the user.

Note that this parameter does not include delays for picking up

and dropping off passengers, but does include time spent at red lights

or stop signs, as well as acceleration and deceleration.

4) Load and Unload Delays Per Passenger

Stopping to pick up and drop off passengers and waiting for new

pickup instructions results in vehicle delays, the extent of which will

impact overall system performance. There is no standard way of estim-

ating loading and unloading delays. Measurements of the pickup delay

in actual systems ranged from .375 minutes in Batavia, to 3.5 minutes

in Rochester, although in the latter case there was a major communica-

tion problem that was causing part of the delay. A reasonable range

of values would be .35 to .80 for both load and unload delays. In some

cases pickup delays may be greater because passengers require time to

get from home to the waiting vehicle. A default value of .5 minutes

has been built into the model for each of these values. A higher

value might be used for loading delays in a shared ride taxi system,

where passengers might be accustomed to waiting in their homes. A

higher value for both these delays should be used in a system where a

large number of passengers are expected to be elderly.
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5) Dispatching System Parameter

The type of dispatching system used can have a significant impact on

the quality of service. There are many types of dispatching systems,

algorithms and policies that can be used for DRT systems; however, this

is not the appropriate place for a full discussion of those options.

For the purpose of the model, dispatching options have been collapsed

into two parameters, defined as a and 3. a is a measure of whether the

system is computer or manually dispatched. Its presence in the model

is based on the assumption that computer dispatching results in a better

level of service (represented by reduced wait time) than manual dispatch-

ing.* This assumption is supported by the results of the Haddonfield,

New Jersey DRT demonstration project, the only system to have success-

fully implemented computer dispatching prior to the development of this

model system. a should be set to 0 for forecasting the performance of

a computer dispatched DRT system. For manual systems, a suggested range

for a, based on the Haddonfield results, would be .1 to .3. Users

should consider a value of a from the lower end of this range for systems

when anticipated demand is low (vehicle productivity of 3 to 4 passen-

gers per hour) and a higher value of a for systems with higher antici-

pated demand levels. A default value of 0 has been built into the model

so if the model is to be used to forecast for manually dispatched sys-

tems, a should be reset.

*This is still an area of dispute among DRT system designers. Certainly
an inefficient computer dispatch system is likely to perform more poorly
than a well-organized manual system.
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3 reflects the relative importance the dispatching system places on

wait and ride time and is discussed in more detail in Appendix B. It

has been found that an equal weighting of wait and ride time in a com-

puter dispatch system will result in the lowest total travel time.

Thus, the Haddonfield system and the computer system being implemented

in the Rochester, New York, DRT system have utilized an equal weighting

on wait and ride time in the scheduling algorithm. This corresponds

to 3=0. It is suggested that 3 be set to 0 if a is set to 0, i.e.,

for a computer dispatched system, although it is certainly plausible

for a computer system that does not weigh wait and ride time equally to

be implemented.

Observations of manually dispatched systems have indicated that both

dispatchers and drivers place a greater weight on ride time than on wait

time because of their concern for passengers "already on the system"

(i.e., on board the vehicle). They therefore attempt to minimize ride

time at the expense of wait time. To model this situation 3 should be

set greater than 0; a value of .3 is suggested. A default value of 3=0

has been used with a suggested range of -.6 to +.6, with negative values

corresponding to a greater weight on wait than ride time.*

6) Group Size Adjustment Factor

This factor is one characteristic of demand rather than of the sys-

tem. It is necessary because the performance of a DRT system is a func-

*When 3 > 0, because of the structure of the model, it is theoretically
possible for calculated ride time to be less than the minimum direct
ride time. The software will test for this, and set ride time equal

to the maximum of these two values. Thus, a very high value of 3 will
simply result in service times corresponding to premium ride taxi.
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tion of trips by passenger groups (or fares) and not of passenger trips.

That is, it does not take a significantly longer time for a DRT vehicle to

serve two passengers travelling together than to serve a single passenger.

Since the demand model predicts passenger trips, it is necessary to fac-

tor down the total before entering the supply model.

The factor is simply the average number of passengers in a group.

Experience with actual DRT systems suggests that for the work trip this

value is approximately 1.0 (since family members or neighbors typically

do not work at the same location), while for the non-work trip it is

about 1.2. These values have been used as defaults. As pointed out ear-

lier in this section, this factor is also considered in developing the

fare matrix, and is likely to be a function of the DRT fare structure.

If each person is required to pay full fare regardless of whether he/she

is travelling in a group, the average group size will probably be smal-

ler than if each group has a single charge, regardless of the number in

the group.
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3.5 Data Needs: Demand Model Inputs

All of the demand model inputs discussed in this subsection are input

by period and as such can be changed from period to period. This is es-

pecially useful in the event that the user wishes to model a policy which

limits access to certain zones by one or more modes during certain peri-

ods of the day. Any variables which are not explicitly changed from per-

iod to period remain the same. All times discussed are in units of min-

utes and all costs are in units of cents. Each of the demand model in-

puts and related functions are described below:

1) Availability of Alternatives

Each of the four basic modes has an associated in-vehicle travel

time matrix. A mode is considered to be unavailable for an 0-D pair if

the value of the in-vehicle travel time is less than or equal to 0 minutes.

In the case of DRT, this time is computed by the supply model for all in-

ternal trips and is never zero. However, drive alone, shared ride, and

bus times are input in DTPS format matrices. Thus, matrices with zero

values in some cells exclude certain modes from consideration for selec-

ted 0-D pairs. The case of feeder to line haul service is handled in an

analogous manner. The feeder in-vehicle time matrix defines (with posi-

tive values) those line haul access points in the DRT service area. The

model has a route finding algorithm which is invoked to determine the

best access point for each DRT service area zone, and the resulting level

of service for drive alone, shared ride, and DRT if they are available.

2) Required Matrix Inputs - Travel Times for Drive Alone, Shared Ride,

Bus, Transit Linehaul; Transit Linehaul Fares

Matrix inputs are the most general method of representing level of
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service data. Unfortunately, they are also the most difficult and time

consuming for the user to prepare. In an effort to save the user some

effort, some of the demand inputs can optionally be input as single area-

wide constants; these are discussed in the next subsections. It was felt

that such a simplification would be unacceptable in the case of travel

times as well as the fare for the linehaul service, so the following

are always input in tables:

a) Drive alone and shared ride in-vehicle times - These times
should be based on the user's knowledge of congestion conditions,
street system layout, etc. They represent average values for

zone to zone movements and do not include parking times. As a

first approximation the user could consider using a systemwide
average speed, the street adjustment factor, and the zonal coor-
dinates to externally compute the origin-destination times.

b) Fixed route bus in-vehicle and out-of-vehicle times - These

values can generally be derived from route schedules in a fairly
straightforward manner. The out-of-vehicle times should consist
of origin zone walk time plus about one half the headway (up to

a maximum of 30 minutes) for initial wait time, plus any transfer
times involved in the trip. If a transfer at B is involved in

going from A to C, then the A to C level of service is simply the

sum of A to B and B to C unless the schedules are designed such

that the transfer at B can be made in less than half the headway
of the B to C service. The difficulties with constructing this

level of service arise in aggregating routes between 0-D pairs

and in determining the initial walk times. This may necessitate
redrawing some of the zonal boundaries, and the user should refer
to the discussion of the validation data preparation in Section 4

for additional information.

c) Linehaul times and fares - Linehaul service is derived in the

same way as bus service except that if the nature of the service
is radically different from bus (a rail commuter line, for example),
other methods will have to be used for approximating wait times.
The times and fares are added to those of the access mode so it

is not possible to have special fares for people who transfer from
DRT

.

3) Optional Matrix of Areawide Constants - DRT and Bus Fares

The model system uses fare matrices internally, but the user has the
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option of inputing single areawide fares for bus and DRT. Both these

fares are those experienced by the individual passenger . Thus, if either

fare system allows discounts for groups, the elderly, etc., this must be

accounted for in preparing the inputs.

4) Areawide Auto Speed and Shared Ride Penalties

Part of the cost of both drive alone and shared ride alternatives is

the operating cost of the trip being considered. The cost submodel uses

an average, user-specified auto speed as an input. The effects of trip

deviations to pick up other riders can be accounted for by inputing pen-

alties for shared ride for both in-vehicle and out-of-vehicle travel time.

These numbers are average values which must account for sharing rides

within the same family as well as among co-workers who might be quite far

apart

.

66



3.6 Example Problem

The example problem developed in this subsection serves to illustrate

how the model can be used. While this problem is fairly complex and con-

siders many unusual situations which might not be encountered by the

user, it does indicate how a user should use the system and how he/she

might handle more complex situations. These complications will be intro-

duced in the following discussion after a review of the more basic ele-

ments of model set-up.

1) Site and Service Description

The example considers the town of Irondequoit
,
New York. A demand

responsive transportation system was implemented in Irondequoit in April,

1976, as a second DRT service module in the IIMTA sponsored Service and

Methods Demonstration of integrated fixed route/DRT service in the Roches-

ter metropolitan area. The first DRT service in that demonstration is

the Greece-Rochester system on which the demand model was calibrated.

The Town of Irondequoit and its relationship to the Rochester metropoli-

tan area is shown in Figure 3.1.

The Irondequoit many-to-many DRT service area is shown as the shaded

area in Figure 3.2. Although it is this element of the overall service

that we are trying to model, the many-to-many service is not the only

transit service in the area, nor is it the only form of DRT service.

The services available in Irondequoit during different times of the day

are discussed below.*

*The services described here were implemented in April 1976. The service
configuration has since changed somewhat.
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Figure 3.

1

Irondequoit and its Relationship to the
%

Rochester Metropolitan Area
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Figure 3.2- Irondequoit Many to Many DRT Zones
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a) Peak hour services (6:30-9:00 AM; 3:00-7:00 PM}-- During peak
periods a number of fixed routes (shown in Figure 3.3) serve the

area, connecting the town with the Rochester central business dis-
trict (CBD) . Limited service is also provided to the Kodak Park
employment complex in neighboring Greece. In addition, a subscrip-
tion service is offered from the eastern part of town to Kodak
Park (West), with one trip arriving at Kodak at 7:30 AM and leav-
ing in the afternoon at 3:30. Many-to-many DRT service begins op-
eration at 8:00 AM, and is also provided in the afternoon peak.

b) Midday service (9:00 AM - 3:00 PM) - Many-to-many DRT service
is provided throughout the midday period. Bus routes 7, 9, 11

and 12 are terminated at Ridge Road during this period, as shown
in Figure 3.4. DRT service acts as a feeder to these routes, as

does a fixed route loop bus service, also shown in Figure 3.4.

Route 5 within the service area is converted into a route devia-
tion service. The small DRT vehicles on this service follow the

basic route, but can deviate to specified areas (shown by the dotted
lines in Figure 3-4) to pick-up and drop-off passengers upon re-

quest, then connect with the regular route 5 at Ridge Road to al-
low transfers.

c) Early evening service (7:00-9:00 PM) - Service during this

period is identical to the midday service except that the loop
bus service is not offered.

d) Late evening service (9:00 PM - 1:00 AM) - Many-to-many service
ends at 9:00 PM, although the route deviation service continues un-
til 10:00 PM. The major change during this period is the introduc-
tion of "urban PERT" service. Routes 5, 7, and 9, operating between
Irondequoit and the Rochester CBD, are replaced by the three route
deviation zones. Fixed route service is still provided at the regu-
lar off-peak fare of 25 cents but doorstep pick-up and drop-off
within the route deviation zone is also offered at the regular DRT

fare of $1.00.

2) Setting up the Model Inputs

a) Zone System

The first step in setting up the model is the establishment of an

appropriate zone system. The easiest approach is to use census tracts

as zones. The actual DRT service area is considered first. In the Iron-

dequoit case, some census tracts are entirely within the service area;

others are partially within the area, and partially outside the area.
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Figure 3. 3 - Irondequoit Peak Hour Bus Routes
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Thus, the service area will consist of some entire census tracts and some

partial tracts.

While in some cases only the service area need be represented, in

Irondequoit, which is part of a larger metropolitan area, there are un-

doubtedly trips made beyond the service area boundaries. Furthermore,

DRT service in Irondequoit is used to provide access to line haul ser-

vices which leave the area. Therefore, a set of external zones must also

be specified. Recalling that the cost of running the model is highly

sensitive to the number of zones, care must be taken in selecting ex-

ternal zones. A balance must be struck between the desirability of

separating areas with different characteristics and minimizing the total

number of zones. The following external zones are suggested for Ironde-

quoit :

the remainder of the Town of Irondequoit which does not have DRT
service

;

the Greece/Rochester DRT service area, since fixed route bus ser-
vice is available from Irondequoit to Greece, and since passen-
gers are allowed to transfer between the DRT systems in Greece
and Irondequoit;

the Rochester CBD;

the sector located between the Rochester CBD and Irondequoit
(which has evening route deviation service)

;

the remainder of the City of Rochester plus the suburbs east of

Irondequoit. (This assumes that very few trips are made from

Irondequoit to southern suburbs or western suburbs other than

Greece .

)

The entire suggested zone system is shown in Figure 3.5. Once the

zone system is established, a coordinate system must be created to allow

measurements of distance. The orientation of the coordinate spacing is
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Figure 3.5 Suggested Irondequoit Zone System



entirely arbitrary. A spacing of .5 miles between grid lines is suggested.

b) Zonal Data

Information that must be collected for each zone includes the fol-

lowing:

zone centroid coordinates from the coordinate system;

population - from census* (or local census update);

zonal area - from map with use of planimeter or other such device;

intra-zonal trip distance - for square zones, the expected aver-
age trip length, assuming origins and destinations are uniformly
distributed, is approximately equal to a/2

,
where a is the zone

area in square miles. Estimates based on formulas such as these
are sufficient for the purposes of the model.

zonal retail and wholesale employment**

c) Work Trip Data

Two work trip distributions are needed: 1) a zone-to-zone work trip

matrix; and 2) a distribution of work trips by time of day. The former

information is available for all urban areas through the U.S. Census

(third count). In the case of Irondequoit, the local Municipal Planning

Organization, the Genesee Transportation Survey, had this information on

tape. For areas that do not have ready access to this data, there are

services that have all' census tapes, and will sell copies of the tape or

printouts. If the user cannot obtain the data, he/she will be required

to construct an artificial work trip matrix based on readily available

*For zones that include only part of a census tract, population estimates
can be based on consideration of the area percentage of the entire tract,
plus observation of maps and informed estimates about relative population
density

.

**The following Standard Industrial Classification (SIC) codes are sugges-
ted: Wholesale Trade (Division F), Retail Trade (Division G) , Finance,
Insurance and Real Estate (Division H)

,
Service (Division I), Public

Administration (Division J)

.
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data such as the number of employees by industrial classification living

in each census tract, and knowledge of the local community.*

The time of day distribution of work trips is typically not readily

available, unless a detailed travel survey has been conducted recently.

Users unable to obtain such a distribution can use results from similar

studies conducted in other areas or rely on the default values. The user

might modify existing distributions using knowledge of local conditions

(e.g., a predominance of local jobs which begin at 9:00 AM), as described

for the validation sites in Section 4.

d) Socioeconomic Characteristics

Areawide socioeconomic characteristics to be determined include:

automobile ownership distribution

number of non-workers over the age of 16

percent of total population over the age of 64

the distribution of household size over the age of 16.**

While the first three characteristics are readily available from the

Census, the last category of data is generally not readily available.

Overall household size distribution is a second count census data item.

Household size versus age of household members may be available from

fourth count census tapes or local travel surveys. For users who do not

*As discussed earlier in this chapter, the work trip matrix is entered
into the model in one way format, e.g., home-to-work . The model auto-
matically reverses the trip direction for the trip home.

**The actual distribution desired is automobile ownership versus household
size over the age of 16. This information may be available on a sixth

count tape, but would be very hard to obtain. It may also be available
if a local travel study has been undertaken. The model system has the

capability to approximate this distribution from the two marginal dis-
tributions .
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have access to this data, the necessary distribution can be reasonably

approximated by modifying the overall household size distribution.

Table 3.1 lists a suggested method for converting household size to

household size over the age of 16, based on information on the differ-

ence between the two distributions in Rochester and Haddonfield and

simple common sense (e.g., all one person households consist of one

person over the age of 16)

.

e) DRT Service Data

For an analyst planning a new DRT system, characteristics such as

vehicle fleet size are design parameters. Since the Irondequoit system

is already designed, the model is being used to predict the ridership

based on the following known characteristics of the system:

vehicle fleet size - an average of three vehicles are used
throughout the service day;

vehicle speed - average speed is approximately 13 miles per hour;

load, unload times - average 2.8 minutes and 1.8 minutes respec-
tively as measured in Greece;

fare - base fare $1.00 plus 25c for additional passengers. Assum-
ing average group size for work trips of 1.0, the average fare is

$1.00. Assuming average group size for non-work trips equals 1.2,

average fare = (1.00 + .2 x .25)/1.2 = $.875. These are areawide
fares

.

a, 3 - set at default values.

3) Analysis Periods

Changes in the services during the day provide natural analysis peri-

ods in Irondequoit. Suggested periods are:

8 : 00 AM - 9 : 00 AM - morning peak during which many-to-many ser-
vice is offered;

9:00 AM - 3:00 PM - midday service
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Table 3.1 - Assumption About Household Size Distribution

Household Size
all ages

Percent Household Size
over age of 16

1 person 100% 1 person

2 person 80% 2 person
20% 1 person

3 person 40% 3 person
40% 2 person
20% 1 person

4 person 30% 4 person
30% 3 person
20% 2 person
20% 1 person

5 person 10% 5 person
30% 4 person
30% 3 person
20% 2 person
10% 1 person

6 or more 5% 6 or more persons
persons 10% 5 person

30% 4 person
30% 3 person
20% 2 person
5% 1 person
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3:00 PM - 7:00 PM - afternoon peak period
7 : 00 PM - 9 : 00 PM - evening service.

Since many-to-many DRT service is not offered after 9:00 PM,

there is no need to model late evening service. Also, since service

begins well past the actual start of work trips in the morning, the

total number of work trips in the afternoon for which DRT is an op-

tion should be scaled down.
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3.7 Special Issues in Complex Service Areas

Thus far the set up of the model has been fairly straightforward,

but the existence of alternative public transit services in Irondequoit

introduces an additional level of complexity. Many model users might

wish to ignore this question unless faced with a situation as complex

as that of Irondequoit. However, if alternative bus routes do exist,

their consideration can prove quite time consuming.

The first issue to be considered is fare in terms of time of day

variation and also variation for different origin-destionation pairs.

Different fares are charged during peak and off-peak periods on Ironde-

quoit bus routes. The peak period fare is 40q for all persons, but

during the off-peak, the fare is 25q for the general public, and 20q

for senior citizens. Ideally, the model would be able to distinguish

between regular and senior citizen fares; however, this capability has

not been included in the system. Therefore, an estimate of the average

fare paid by the passenger should be made. Assuming that the percen-

tage of all trips which are made by the elderly is approximately the

same as the percentage of elderly in the total population (an assumption

that is true in some areas but not in others), the average fare can be

computed as : ( . 9x$ . 25)+( . lx$ . 20) = $.245. Thus, in this case, the impact

of the senior citizen fare is virtually negligible.

There are two considerations that affect the decision whether or

not to use a single areawide fare. First of all, any trips requiring

a transfer cost an additional five cent transfer charge, so the fare is
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not the same for all zone pairs. Secondly, the fare differential between

fixed route and doorstep service on the route deviation service must be

considered. Determining the fare to use for this service requires re-

solution of the entire question of dealing with hybrid services.*

There are two basic ways to represent route deviation within the

model system. On the simplest level, if route deviation is available in

addition to many-to-many service, the fixed route and demand-responsive

components of the route deviation system might be "merged" into a single

"fixed route" service which displays combined characteristics. Thus,

if the fare for the fixed route option is 25c and the fare for deviation

service is 40q, and it is expected that 30% of the users choose the

deviation system, we might calculate an "effective" fare of (.7 x $.25) +

(..3 x $.40)= $.30.

The alternative approach is to consider the fixed route and devia-

tion options as totally separate services. The former would be modelled

as a fixed route service with an in-vehicle travel time penalty to reflect

the impact of deviations. The latter would be modelled as a DRT system

separate from the basic many-to-many system being analyzed, but with

the same demand model' being used. It would be desirable, in this case,

to use a revised supply model which more closely represented route devi-

ation service.

Since the present supply model is not designed to consider a route

deviation service, and since in Irondequoit the route deviation service

*The checkpoint subscription service offered to Kodak Park is much easier
to deal with. A checkpoint subscription service is essentially a fixed
route service, since it makes only fixed stops once a route has been es-
tablished. In fact, since in Irondequoit the service is offered before
many-to-many service begins in the morning, it probably need not be

considered at all.
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is designed to serve primarily as a fixed route service with only a lim-

ited number of deviations permitted because of service area constraints,

the former approach is more appropriate. The fare to be used in the

model for this service should then be an average or effective fare.

Since deviations are available to limited locations only, one might con-

sider using a fare matrix with different average fares for different

trips. However, closer examination of the system indicates that, at

least as far as the impact of the route deviation service is concerned,

a fare matrix is probably unnecessary. A maximum of 10% of the passen-

gers use the deviation option in Irondequoit; many of these are senior

citizens who do not pay a deviation charge. Thus, the average fare in

areas where deviations are allowed is not significantly different than

the base fare.

The five cent transfer fare will, in general, have an insignificant

effect on ridership levels. Thus, unless one is interested in exploring

the effect of significantly raising the transfer charge, single fare

rather than a fare matrix would suffice.

The second major input related to the fixed-route bus mode is in-

vehicle travel time. This input must be in matrix form. To develop

this matrix, it would probably be best to overlay a route map on the

zone system map. All interzone and intrazonal trips, that are connected

either by a direct route or via transfers should be identified.* A

value of 0 should be entered into the matrix for zone pairs that are

not connected. The travel time between zone centroids should be fairly

*Transfers should be considered feasible only when routes cross or come
within about 1/8 mile of each other.
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easily computed from the bus schedules. (In Irondequoit the route devia-

tion schedule is designed with sufficient slack to allow deviations,

and thus should give an accurate picture of travel times.)

Note that in the case of Irondequoit loop bus (or any other similar

service which operates in one direction only)
,

the in-vehicle travel

time matrix will not be symmetric. Note further than in the case of

Irondequoit, some origin-destination pairs that may be linked during

peak hours may not be linked during the off-peak.

The out-of-vehicle time matrix is probably the most difficult of

all model inputs to develop. Out-of-vehicle time has three components:

wait time, transfer time, and walk time. Consider wait time first. It

has been demonstrated that for headways of up to about one-half hour,

mean wait time equals approximately one-half the headway. In other

words, passengers are not affected by the actual scheduled time, and

arrive randomly at the bus stop. As the headway increases beyond 30

minutes, passengers become more aware of the schedule, and are more

likely to schedule their arrival at a bus stop to be a few minutes be-

fore the scheduled bus arrival. One study (Wilson, Kullman and Peck-

nold, 1972) has suggested the relationship shown in Figure 3.6 as an

approximate relationship between wait time and headway. This model

deviates from the line representing half the headway in the region of

15 to 20 minute headways.

In Irondequoit, all bus routes operate on 30 minute headways or

less, with the exception of the loop bus which operates on 45 minute
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headways. Thus, the approximation of one-half of the headway can be used

as the wait time estimate for all routes except the loop bus, which would

have an estimated wait time of 18 minutes. Note that different wait

times exist during different time periods of the day. However, in the

case of the routes with variable headways during a given time period,

an average wait time can be used. For example, route 5 during the peak

operates on an 8-15 minute headway; the average headway during this

period is approximately 10 minutes. Furthermore, the headway on route

5 is shorter at Ridge Road than in Summerville, the northwest portion

of Irondequoit (e.g., some runs to Rochester CBD originate at Ridge

Road). Thus, different wait times will prevail along different parts

of the route.

Transfer time can be calculated by determining the mean scheduled

gap between vehicles for trips requiring transfers. In this case, it is

suggested that a transfer time penalty of perhaps 3-5 minutes be added

to all transfer times to account for schedule unreliability.

Estimation of walk time is a classic problem in transit analysis.

The simplest approach used is to measure the distance from the zone cen-

troid to a bus route and use this as the average distance a person will

walk. This technique typically results in a significant underestimate

of walk time. For example, in a zone in which the bus route crosses

the centroid, a clearly erroneous walk distance of 0 would be predicted.

Similarly, in large zones, even where the bus route does not cross the

centroid, the distance between the centroid and the route may not repre-
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sent the average distance a person would have to walk to reach a route.

A graphical representation is useful to illustrate a way in which

walk distance might be estimated. Consider first the following situa-

tion :

In this case, the average walk distance in the left portion of the

zone would be one-sixteenth of a mile, while the average walk distance

in the right portion would be one-quarter mile. Assuming that people

are uniformly distributed throughout the area, four times as many people

would live in the right portion as in the left portion. The weighted

average walk distance is therefore (4/5 x 1/4) + (1/5 x 1/16) = 17/80

or .21 mile.

But consider the same type of situation, with the following dimen-

**— bus routes

1 •r ttoi* 1- mi .
H
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The average distance in the left portion might again be estimated as

one-half the width, or one-eighth mile. However, to assume that the av-

erage walk distance in the right half would be three-fourths of a mile

would probably lead to a very low prediction of ridership, since few

persons are likely to walk three- fourths of a mile. The actual average

walk distance is likely to be much shorter, since only persons living

closer to the route are likely to use it. But to use a very low walk

distance would likely yield overestimates of demand.

One way of dealing with this problem is to subdivide the zone into

two zones, one which has bus access, and one which might be considered

to have no access at all. However, as noted earlier, the cost of run-

ning the model is very sensitive to the number of zones. Therefore,

the user may wish to avoid establishing additional zones and use an al-

ternative approach for estimating wait time in .:hese situations. A

possible approach would proceed as follows. For area widths of up to

about one-half mile (i.e., distance between zone border and bus route),

one-half the width would be used as an estimated walk distance. For

greater widths, walk distance would be set at one-fourth of a mile, plus

a percentage (less -than 50%) of the distance greater than one-half mile

that decreases with increasing width. This "compromise" value is less

than half the total width (which would be expected to result in an un-

derestimate of demand) but greater than the actual average walk distance

(which would be expected to result in an overestimate of demand) . This
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"compromise" approach should result in more reasonable predictions.*

Once walk distance is obtained for each zone, the time it takes to

walk that distance can be estimated by applying an average speed of

about twenty minutes per mile.

*Because the model system has been designed as a DRT model, and many as-
sumptions have gone into the fixed-route bus portion of the model, the

user is cautioned not to spend too much time worrying about developing
accurate estimates of out-of-vehicle time.

The route deviation system in Irondequoit adds further complications to

the estimation of out-of-vehicle time. As briefly noted earlier, a rea-
sonable approach to estimating walk times for the route deviation system
would be to estimate the average walk time in the zones in question.
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SECTION 4

VALIDATION

4.1 Choice of Validation Sites

Validation of the model system was conducted with data from two

sites which were selected to reflect differences in geographical loca-

tion, type of development patterns, type of service offered, and size

of service area. The existence of a stable DRT system was another im-

portant criterion so that actual patronage could be compared with model

predictions. Based on these criteria, Davenport, Iowa, and LaHabra,

California, were selected to test the model.

Davenport is an older, fairly dense midwestern city with a popula-

tion of about 100,000. LaHabra is a new, suburban area and is part of

the Los Angeles metropolitan area. Demand responsive service in Daven-

port is privately owned and operated, has fares in excess of $1.00,

and uses standard five-passenger automobiles. In LaHabra, the service

is publicly operated and subsidized, with a maximum fare of 50c, and

utilizes twenty-one passenger minibuses. While many DRT trips in

Davenport are oriented to the downtown area, trips in LaHabra are more

uniformly distributed throughout the area. Thus, the application of

the model to those areas should provide important information on its

ability to model sharply different systems, both of which differ sub-

stantially from the calibration sites. The two sites are discussed

in more detail below.
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4.2 Davenport, Iowa: Site Description

Davenport, Iowa, a city of just under 100,000 persons, is part of

the "Quad Cities" area, which includes Davenport and Bettendorf, Iowa,

and Rock Island and Moline, Illinois. The CBD's of all four cities lie

along the Mississippi River, with downtown Bettendorf lying three miles

to the east of downtown Davenport, and Rock Island and Moline mirroring

these cities on the other side of the river. Total population of the

Quad Cities area is 310,000. Davenport and the Quad Cities are shown

in Figure 4.1.

Demand responsive transportation is provided in Davenport in the form

of shared ride taxi service, operated by the Royal Cab Co. The service

is operated on a profit-making basis and is one of the few DRT services

in the country that is profitable. Since shared ride taxi service is

virtually identical in concept to the many-to-many DRT service offered

by the public sector in Haddonfield and Rochester (as well as other loca-

tions)
,
the model system should be able to predict shared ride taxi ri-

dership. Davenport was selected as a validation city specifically to

test the model's ability to forecast patronage in a shared ride taxi sys-

tem.

Service in Davenport is provided with a fleet of 12 taxicabs. Yearly

ridership on the system reached a high of over 500,000 in 1974. It has

since declined somewhat because of the destruction of almost one-half of

the vehicle fleet in a garage fire. The Davenport area is also served

by a fixed-route bus system.

Tbe first step in setting up the validation runs was the establish-
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ment of a service area zone system. DRT service is offered throughout the

Quad Cities area; however, a check with the Royal Cab Co. revealed that a

sizeable majority of the trips are in fact internal to Davenport. Thus,

it was decided to first consider only the city of Davenport as the ser-

vice area. A review of a map of the city and census data indicated that

the outer census tracts of Davenport are very sparsely settled. Since

the cost of running the model is highly sensitive to the number of zones

used, it was decided, for the initial validation, to further limit the

specified service area to the most densely populated area of Davenport.

This included 23 census tracts, which were used as the zone system, and

a total population of 86,769 (out of a total city population of 98,500),

according to 1970 census figures. Subsequently, five additional "super

zones" were created. The first included the central city Bettendorf

area; the second was central city Rock Island; the third was central city

Moline; and the fourth was the semicircular area north of the base service

area, including parts of Davenport and Bettendorf and some suburban areas;

and the fifth was the corresponding southern semi-circle consisting of

parts of Rock Island and Moline, and their suburbs. Note that in this

application these five zones are not external zones since DRT service in-

cludes these areas.* The base service area and the five surrounding

zones are shown in Figure 4.2.

All of the necessary zonal data were obtained in the same way as

*For the purposes of the supply model, it would not be appropriate to

consider these zones to be part of the service area. The supply model
was based on an assumption of uniform travel patterns. Since the major-
ity of trips are intra-Davenport, it is that area that should be used
for the supply side.
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for the Irondequoit example in Section 3. The work trip matrix was ob-

tained from the local planning organization, the Bi-State Metropolitan

Planning Commission. The time of day work trip distribution was based

on composite data from similar cities and is shown in Figure 4.3. All

socioeconomic data were developed as in the Irondequoit example in Sec-

tion 3. Estimates of in-vehicle and out-of-vehicle travel time for the

extensive, fixed-route bus system serving the area was also obtained in

the manner discussed earlier. Note that in a number of cases zones

could have been subdivided into zones with bus access and zones without;

however, it was felt that such subdivisions would create too many zones,

so the method discussed earlier for estimating walk time was used.
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4.3 Davenport, Iowa: Operating Data

The best source of data on the Davenport DRT system is a study per-

formed by the University of Tennessee Transportation Study Center.* Un-

fortunately, the parameters of the service have since changed because of

the destruction of some of the vehicles. Consequently, validation had

to be based on information obtained directly from the system operator.

His estimate of total ridership over the course of the day was scaled

down for our purposes by: first considering the ratio of trips in the

5:30 AM to 5:30 PM period (which was the time period modelled) to the

total ridership, as available from the University of Tennessee study,**

and second, multiplying this value by a factor which the operator es-

timated to be the percentage of total trips made within the designated

service area. The data that was developed for validation are shown in

Table 4.1. Note that an attempt was made to capture mean values only,

but daily values can vary by as much as 15-25 percent from the mean.***

Bus ridership was obtained directly from the Rock Island County

Metropolitan Transit District, which provides service in the Quad City

area. They estimated that daily ridership on Davenport bus routes was

between 3,000-3,500 per day. We estimated that approximately 35% of the

total trips are made in each of the two peak periods (6:00-9:00 AM; 4:00-

6:00 PM)

.

*Davis et al, Economic Characteristics of Shared Ride Taxi Systems ,

August, 1974.

**The study covered ridership over a two-week period.

***The University of Tennessee study indicated that daily ridership varied
from a low of 859 to a high of 1679 over the two-week period.
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4.4 LaHabra, California: Site Description

LaHabra, California, is located in Orange County, California, and

is part of the Los Angeles Metropolitan Area, as shown in Figure 4.4

LaHabra is southwest of Los Angeles proper, not far from the City of

Anaheim. It is a relatively small city of just under seven square miles,

with a total population of 41,350.

Many-to-many DRT service was established in LaHabra in 1973, as

the first step by the Orange County Transit District toward the develop-

ment of demand responsive services throughout the county. Since then,

LaHabra has continued and other DRT services have been implemented in

the county despite legal difficulties with the local taxi industry.

The LaHabra system is county-owned, but managed by a professional DRT

management firm.

The validation data for LaHabra were organized in much the same

manner as in Davenport. The LaHabra case was much less time consuming,

since the service area contained only fourteen zones, rather than the

twenty-three zones used in Davenport. Establishment of service area

boundaries in LaHabra was also much simpler, since the DRT service is

provided only within the city limits of LaHabra. Two external zones,

the northern and southern semicircles surrounding the city up to a

radius of 10 miles from the city center, were also established. The

LaHabra zone system is shown in Figure 4.5.

All other necessary information was obtained in much the same manner

in LaHabra as in Davenport. Again, the same time of day work trip dis-

tribution was used because of a lack of local data.
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4.5 LaHabra, California: Operating Data

A fairly extensive data base is maintained on the LaHabra DRT system

by a private management firm. Daily ridership information was obtained

for the months of June and December 1975.* In addition, for one day in

both months the following information was provided:

1) ridership by hour

2) mean wait and ride times by hour

3) number of vehicles in service by hour

4) trip purpose distribution

5) vehicle speed.

Although the sample size is too small for any confidence on hourly

travel volumes and service times, sufficient data are available to be

fairly certain about daily ridership. Bear in mind, however, that daily

ridership variations are substantial; for example, weekday ridership on

the system in June 1975, ranged from 377 to 585. Thus, while the aver-

age ridership was 466, daily ridership fluctuated by 20-25% about the

mean. The information available for validation is summarized in Table

4.2.

Fixed route bus ridership in the area was obtained from OCTD as

well. Unfortunately, ridership data was not available for trips within

LaHabra, since each of the bus routes serving LaHabra originated and

ended outside the LaHabra boundaries. Bus ridership within LaHabra

was estimated at 250-400 per day, based on the ratio of route miles in

the city to total route mileage.

*Updated ridership figures were provided in a telephone conversation
with the Orange County Transit District (OCTD)

.
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4.6 Modelling the Fixed Route Bus Mode

As discussed in Section 2, both the work and non-work demand models

were calibrated without fixed route bus available as an alternative, be-

cause there was insufficient data on which to develop an appropriate

model. In performing the validation, however, it was decided to ex-

tend the original model to represent fixed route bus and to compare the

predictions with actual ridership levels.

To do this, it is necessary to define a utility function for fixed

route bus and a set of appropriate coefficients. Since fixed route bus

is most like DRT in that neither requires a privately owned vehicle nor

the ability to operate one, the DRT utility function was deemed the most

appropriate starting point for "synthesizing" the fixed route bus util-

ity function. For example, there is no obvious reason to assume that

the fare for DRT and that of fixed route bus should not have identical

coefficients

.

It should be clear that a synthesized utility function for fixed

route bus is not likely to perform particularly well in these valida-

tion tests, given the caliber of the bus data. Therefore, its success

or failure to accurately predict bus patronage should not be viewed as

an indication of the merits of the DRT patronage forecasting procedure.

Rather, the inclusion of the synthetic bus utility in the validation

tests was designed to test the feasibility of expanding the model's

range of application through a very simple extension.

The assumptions made in developing the synthetic utility for

fixed route bus are as follows:
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1) For work trips, the fixed route bus utility function has the same

coefficients as for DRT. (Note that this does not imply that the utilities

themselves are equal; levels of service on fixed route bus and DRT are

generally quite different.)

2) For non-work trips, the DRT and fixed route bus utility coeffi-

cients were also assumed to be equal, except that the DRT utility func-

tions weight in-vehicle time and out-of-vehicle time equally, while for

fixed route bus the coefficient of out-of-vehicle time was 2.5 times

greater than the in-vehicle time coefficient. The rationale behind

weighting in-vehicle and out-of-vehicle times equally in the DRT util-

ity function was that most DRT wait time was incurred either at home or

at some reasonably comfortable shopping center, doctor's office, etc.

In contrast, out-of-vehicle time on fixed route bus trips is spent

walking or waiting outside, often in inclement weather. The value of

2.5 reflects a general averaging of prior mode choice studies.
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4.7 Validation Results: Daily DRT Ridership and Service

There are a number of different levels at which the validation fore-

casts can be compared with the actual observations. Perhaps the simplest

and most relevant is to examine the daily DRT ridership. The prediction

of this value is most important to decision-makers, since it relates

directly to revenues, costs and profitability.

Table 4.3 compared the predicted and actual daily ridership for

both Davenport and LaHabra. Note that the forecast values are accompan-

ied by a range which reflects the sum of the possible errors in predic-

tion for each operating period. As discussed in Section 2, it is rec-

ommended that the iterative equilibrium procedure be terminated when the

upper and lower bounds are reasonably close to each other. This method

saves a substantial amount of computer time. Furthermore, the use of

more accurate convergence criteria is of little /alue since the error

associated with models probably exceeds the difference between the solu-

tion approximated by the looser convergence criteria and the actual equi-

librium value. In addition, for validation purposes, the ridership

figures against which the forecasts are being compared are subject to

significant measurement errors, so further accuracy in forecasting seemed

unwarranted.

The range for the demand forecasts in any single operating period

was developed by the forecasts at successive iterations. The last value

of the vehicle productivity and its last upper and lower bounds (as de-

scribed in Section 3) can be easily obtained from the output. In addi-
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Site
Predicted Value
Passengers/day

Actual Value
Passengers/day

Davenport 730 + 75 580

LaHabra 266 + 45 400

Table 4.3 - Total Daily DRT Ridership Fore-

casts in Validation Sites
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tion, by inspection of the output, it is possible to determine the corres-

ponding upper and lower estimates of work and non-work trips associated

with these bounds on productivity. The predicted numbers of work and

non-work trips were taken as the midpoints of these ridership bounds

and the bounds were used to indicate the range. The range for the total

daily forecast was simply the sum of ranges for the individual periods.

From Table 4.3, the predicted Davenport DRT ridership is too high

by 150 + 75 passengers, while the LaHabra prediction is too low by 135

4- 45 travellers. These errors (evaluated without their corresponding

ranges) reflect errors of about 26% and 33% for Davenport and LaHabra,

respectively. Accounting for the ranges the errors could be as low as

13% in Davenport and 22% in LaHabra; they could be as high as 39% and

45% for Davenport and LaHabra respectively.

A second aspect of the validation is an examination of the average

daily level of service for the DRT systems. While the ability to accur-

ately predict level of service was not the major objective in the devel-

opment of the model system, it is an implicit objective, since in the

equilibrium structure of the models, errors in service predictions will

produce errors in demand forecasts. The predicted and observed daily

average values of DRT wait, ride and total time are summarized in Table

4.4. (Since the convergence criterion is based on the demand forecasts

the model does not provide a range of possible service levels, although

it is possible to compute these ranges manually from the demand vari-

ations .

)
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The level of service errors range from about 30% in the Davenport

wait time forecast to less than 6% in the Davenport ride time forecasts.

Comparable values for wait and ride time in LaHabra are 9% and 14% re-

spectively. Total DRT service time forecasts for Davenport and LaHabra

differ by about 21% and 15%, respectively , from the observed values.

Table 4.5 examines the individual forecasts of work and non-work

daily patronage.* Perhaps the most notable entry in this table is the

261% error in the Davenport work trip forecast. One might speculate

that the very high fare level in Davenport and the taxi-like operation

of the service has produced a service viewed as unsuitable for work

trip-making by Davenport residents and that this is not captured in the

work trip demand model. The cost coefficient in the work trip mode

split model was adapted from prior studies which used more typical

transit services for calibration. It is therefore not surprising that

an attempt to apply the work trip model to a situation in which fares

are as much as an order or magnitude higher than the calibration data

produces very high errors. Section 5 describes some potential solutions

to this problem.

In comparison, when applied to LaHabra, the work trip model per-

forms much better, with an average error of about 36%. The LaHabra ser-

vice has fare levels which are within the range of the calibration.

*The reader is cautioned that the accuracy of the observed values for
this validation test is questionable, since DRT operators do not take
frequent on-board surveys to determine riders' trip purposes.
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Work Trips
(passengers /day)

Non-Work Trips
(passengers /day)

Site Predicted Observed Predicted Observed

Davenport 361 + 18 100 369 + 57 480

LaHabra 103 + 11 160* 163 + 34 240

^includes school trips in work trip count

Table 4.5 - Daily Work and Non-Work Patronage

Validation Results
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The non-work forecasts differ by 23 and 32 percent from the observed

values in Davenport and LaHabra respectively. However, some care should

be exercised in interpreting the results in Davenport, since the over-

estimation of work trip patronage tends to cause the model to underes-

timate non-work demand. One can think of the extra work trips resulting

in congestion, and the poor service quality then discourages non-work

trip-makers from using DRT.*

*As discussed in Section 5, a comparison of two sketch planning runs, one
with a DRT constant term of 2.085 and one of 0, produced a decrease of
57% in work trips with a corresponding increase in non-work of 163%,
while total trips decreased by only 27%. This effect would tend to

drive work trips down, and non-work trips up, both in the directions
that would seem appropriate for both cities (if school trips are ig-
nored in LaHabra) . However, it is not clear what will happen to total
trips. Therefore, primarily because of time and budget limitations,
as well as the fact that the total trip model was performing reasonably
well, no further changes were made in the model. The implications of
this will be discussed more in the next section.
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4.8 Validation by Period

Since the model system provides forecasts of DRT patronage and

level of service for each period, it is possible to further disaggregate

the validation results. Normally, the further one disaggregates a fore-

cast, the greater will be the expected error in any component. However,

it is useful to examine the results for each period to explore whether

the model is more reliable in some periods than others.

Table 4.6 summarizes the predicted and observed ridership forecasts

by time of day and trip purpose. As expected, the Davenport work trips

are, with the exception of the third operating period, overpredicted;

in the worst case, they are too high by a factor of six. Note that,

however, in the Davenport third period (9:00 AM to 3:00 PM) when work

trips are insignificant, the non-work trips are predicted accurately

(that the predicted and observed non-work trips are numerically identi-

cal is less relevant than the fact that the range of non-work forecasts

(312 + 50) includes the observed value.) This supports the hypothesis

that the 26% overprediction of total daily trips in Davenport is due

principally to errors in the work trip model. The remaining periods

show an overprediction of work trips and an underprediction of non-work

trips; however, the latter is not surprising since, as discussed previ-

ously, the equilibrium structure of the model will tend to "balance off"

overpredictions from one demand sector with underpredictions in the

other

.

The LaHabra forecasts, however, do not present a clear reason for
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the underestimation of total daily forecast. Except for the insignificant

demand in the last period, the forecast in each period underpredicts

total trips.

Another perspective from which to examine the forecasts is to con-

sider each period's percentage contribution to the total demand. This

approach focuses on how well the model reflects the distribution of DRT

demand over the day, ignoring overprediction and underprediction in the

total. Table 4.7 summarizes these results for both validation sites; the

range of forecasts is ignored in this table.

In the case of total trips (work plus non-work)
, the rank of each

period's contribution to DRT patronage is perfectly reproduced in the

forecasts. Furthermore, the consistency between the observed and predic-

ted percentages is fairly good except for those periods with very small

percentages. An example of high error in low demand periods is the

5:30 AM to 7:30 AM period in Davenport, which accounts for 7.4% of the

actual DRT daily patronage, while the model predicts 13%. Similarly,

in the fourth operating period in LaHabra the observed and predicted

percentages are 1.8% and 4.5%, respectively. While these errors appear

quite large in percentage terms, they actually represent extremely

small numbers of trips. As such, they are relatively unimportant in

the context of the actual DRT system design questions the model is in-

tended to address.

When one examines the distribution of work and non-work trips sep-

arately, the agreement between the predicted and observed percentages

is not as good. For example, the observed and predicted percentages of
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non-work trips in the 9:00 AM to 3:00 PM period in Davenport are 65.0%

and 84 . 6%, respectively . It is difficult to assess whether or not this

type of error is of major consequence. However, in more general terms

there is only one case (the work trip forecast in LaHabra) in which the

ranking of the percentage contributions differ in the observed and pre-

dicted values. The levels of service (wait time and ride time) by peri-

od were unavailable in Davenport, but in LaHabra some data was available

In general, the model tended to predict greater variation in levels of

service (over the day) than was reported in LaHabra. For example, ac-

tual total travel times vary over the day from 25 to 31.5 minutes, while

the predicted times range from 20 minutes in the 9:00 AM to 3:00 PM per-

iod, to 35.2 minutes in the 6:00 PM to 7:00 PM period. This is not un-

expected, since an error in the demand prediction tends to produce sim-

ilar errors in the travel time forecasts. If the forecast of total de-

mand in a period is too high, for example, then the average travel time

will also be overpredicted if the supply model is reasonably accurate.
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4.9 Fixed Route Bus Ridership Forecasts

The use of a synthesized fixed route bus utility function was not

successfully validated, in part due to a lack of confidence in the ob-

served ridership values. The predicted fixed route bus volumes were,

in most cases, a factor of two or more less than the "observed" daily

volumes. For example, in Davenport, estimated daily ridership on the

fixed route bus system was between 3,000 and 3,500 passengers per day,

with approximately 800 of those trips made in each of the two hour peak

periods. In contrast, the predicted total bus volume was only 1,754

passengers, with 782 made in the two-and-a-half hour evening peak period

(from 3:00 PM to 5:30 PM).* The predicted ridership for the 7:30 to

9:00 AM period was only 386 passengers.

In LaHabra it was impossible to obtain reasonable data on fixed

route bus volumes since transit routes in LaHabra tend to run across

the city's boundaries into other jurisdictions. Attempts to infer bus

ridership within LaHabra' s boundaries produced estimates which were so

questionable that no validation was attempted.

In summary, it appears that the model must be recalibrated or that

adjustments to the synthesized coefficients to match some base year data

must be made when accurate bus ridership forecasts are desired. However,

the software is fi ly equipped to model the fixed route bus situation,

and these modified fixed route bus utility functions can readily be en-

tered through an optional set of input parameters.

*The periods used to validate the DRT service do not match the peak hours
for which bus volumes were available. It was deemed more important to
maintain consistency with the available DRT data in the validation tests
than to match peak hour data for the fixed route bus system.
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4.10 Summary of Validation Results

The model appears to be accurate in predicting total daily ridership

with an error of between 25 and 35 percent. However, given this general

range of expected errors in total daily ridership forecasts, a number of

qualifications must be made:

1) The work trip DRT patronage model is not accurate in situations
such as the Davenport, Iowa, system where fares are much higher
than those used in estimating the work trip model. Predicted
work trips in this situation were unacceptably high.

2) The more detailed the level of forecast examined, the greater
the expected percentage error. Thus, the forecasts by period
have much higher errors than the total daily ridership fore-
casts. The validation results indicate, however, that the ac-
tual distribution of DRT ridership by period (expressed as the

percentage of daily DRT ridership within each period) is well
represented by the model forecasts.

3) The average level of service forecasts (wait time and ride
time) are as accurate as the total daily ridership figures.
However, in comparison with the LaHabra data by period, the

forecasted level of service varies more than the observed
values

.

4) Attempts to use a "synthesized" fixed route bus utility function
were unsuccessful. Users of the model will have to either cal-
ibrate a separate set of fixed route transit coefficients or

adjust the coefficients to match some existing base year data.
This latter alternative might be accomplished by altering the

constant term (the so-called "pure alternative" effect) in the

fixed route utility.*

While (subj ect to the above reservations) the validation results for

all day forecasts are relatively encouraging, only two sites were analyzed.

These two cities differ significantly from those used to calibrate the

models, but still only constitute a small percentage of existing DRT

*Readers interested in this method may wish to review a paper by Atherton
and Ben-Akiva (1976) which discusses the question of transferring dis-
aggregate model coefficients from one urban area to another.
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systems operating in the U.S. Clearly, more experience with the model

is ultimately needed before a definitive statement about the validity

of the model can be made. In the course of developing a simplified

sketch planning version of the model, we were able to make several addi-

tional preliminary comparisons with six different U.S. DRT systems with

encourating results. These comparisons are described in the following

section.
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SECTION 5

SENSITIVITY ANALYSIS AND PRELIMINARY

DEVELOPMENT OF A SIMPLIFIED SKETCH PLANNING MODEL

5.1 Objectives

Following the validation of the model system, an additional series

of model runs were made using data from a set of hypothetical cities.

The results of these runs were then compared with data from DRT systems

with characteristics similar to those of some of the input cities. The

runs were developed for the following purposes:

1) To provide a further test of the models predictive capability,
this time over a wider range of inputs.

2) To determine how DRT ridership can be expected to vary with
changes in certain inputs.

3) To test how well these runs can serve as the basis of a preliminary
sketch planning tool, enabling the user to obtain a "first
cut" approximation of ridership without developing a site
specific data file.

5.2 Input to the Runs

Given the wide range of data inputs required by the model, and

hence given the large number of possible permutations of system charac-

teristics, it was necessary to try to isolate a few major determinants

of ridership. Ranges for these factors then served as the input para-

meters and were varied from run to run. The variables selected as key

determinants of demand were:

1) Vehicle density (vehicles per square mile)
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2) Population served

3) DRT fare.

Obviously , other factors will influence DRT ridership (e.g., the

number of persons who do not own an automobile)
,
but the selected

variables used are the primary factors affecting DRT patronage. The

set of input values for those variables used in the 18 experiments are

shown in Table 5.1 and were chosen to include most existing DRT systems.

Simple zone systems were established for these runs. Five zones

were used for the 6 square mile areas, as shown in Figure 5.1, while

a 9 zone system was used for the 20 square mile areas, as shown in

Figure 5.2.

The levels of zonal population, zonal wholesale and retail employment,

and zone to zone work trips used as inputs to these runs are shown in

Tables 5.2 - 5.7. These breakdowns were developed somewhat arbitrarily,

based on intuitive notions on how such factors would be distributed in

an "average" situation.* Clearly the actual values in a given site would

depend on the specific characteristics of the site. Thus, a service

area of 25,000 persons which is part of a larger urban area is likely

to have a very different work trip distribution than a service area

comprising an entire city with a population of 25,000. The data was

intended to be more representative of the latter situation, since most

many-to-rnany DRT systems implemented in recent years have been implemented

*Note that the number of work trips in each community totals approximately
25% of the population. This figure can be expected to vary from service

area to service area. The 25% figure is very close, however, to the
figure estimated for the Davenport and La Habra service areas.
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Table 5.1 - Major Inputs

Run Area(Mi^)
Population Number of

Vehicles
Farem

Vehicle
Density
(veh/ s .m.

)

1 6 10,000 3 $.50 .5

2 6 10,000 6 .50 1.0
3 6 10,000 12 .50 2.0

4 6 25,000 3 .50 .5

5 6 25,000 6 .50 1.0
6 6 25,000 12 .50 2.0

7 20 50,000 10 .50 .5

8 20 50,000 20 .50 1.0

9 20 75,000 10 .50 .5

10 20 75,000 20 .50 1.0

11 6 25,000 6 .25 1.0
12 6 25,000 6 1.00 1.0

13 20 50,000 20 .25 1.0

14 20 50,000 20 1.00 1.0

15 20 75,000 20 .25 1.0
16 20 75,000 20 1.00 1.0

17 20 50,000 40 .50 2.0
18 20 75,000 40 .50 2.0
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Figure 5.1

Zone System
6 square mi area

Figure 5.2

Zone System

9 square mi area
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Table 5.2 - Zonal Population and Wholesale/Retail

Employment 5-Zone System

Zone

Population 10,000

I

Population 25,000

Population
Retail & Wholesale

Employment
Retail & Whole-

Population sale Employment

1 1000 800 2000 2550
2 2250 350 6500 550

3 3000 250 5000 750
4 2000 250 6800 350

5 1750 350 4700 800

Table 5.3 - Zonal Population and Wholesale/Retail

Employment 9-Zone System

Population 50,000 Population 75,000
Retail & Wholesale Retail & Whole-

Zone Population Employment Populat ion sale Employment

1 3000 2700 4500 4300
2 8000 750 6500 1600
3 6000 1450 14500 2000
4 9500 1000 12000 1500
5 8000 1100 12000 1750
6 4500 800 10000 850
7 4000 850 6000 1000
8 2400 650 6000 1200
9 4600 700 3500 800
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Table 5.4 - Work Trip Matrix for Population 10,000

Origin
Zone

Destination Zone

''V To
From \ 1 2 3 4 5

1 360 25 5 15 25

2 200 110 75 75 90

3 260 110 110 70 80

4 160 85 65 70 80

5 140 55 55 50 100

Table 5.5 - Work Trip Matrix for Population 25,000

Origin
Zone

Destination Zone
‘^\To
From

1 2 3 4 5

1 500 20 30 20 35

2 900 350 150 130 180

3 600 200 300 150 250

4 700 300 300 100 300

5 500 150 160 80 300
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Table 5.6 - Work Trip Matrix for Population 50,000

\To
From\

1
X 2 3 4 5 6 7 8 9

1 250 40 175 125 80 20 20 20 20

2 550 385 350 250 250 100 100 85 85

3 350 125 500 175 175 70 70 70 50

4 600 200 425 500 250 125 125 100 100

5 600 175 350 200 500 100 100 80 100
6 350 50 125 80 85 85 60 50 60

7 300 40 125 80 85 60 100 60 65

8 175 20 75 40 40 40 40 50 35

9 200 70 125 80 85 100 100 40 85

Table 5.7 - Work Trip Matrix for Population 75,000

v\To
7rom\ 1 2 3 4 5 6 7 8 9

1 350 85 175 65 125 20 40 40 20

2 475 425 185 125 125 70 80 85 80

3 1025 625 850 350 350 125 175 210 210

4 850 550 385 600 350 100 140 185 185

5 850 550 385 300 640 100 150 185 185

6 800 300 350 210 250 200 110 125 175

7 470 125 123 85 85 40 85 60 60

8 470 125 125 85 85 40 40 110 85

9 340 40 40 40 40 20 20 40 85
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in smaller cities. However, the runs were conducted in part to determine

the sensitivity of the model to input parameters such as the work trip

matrix, and to determine how well the model performs using general,

rather than site specific, inputs.

Other inputs to all runs included:

auto ownership distribution - S% 0 cars; 48% 1 car; 36% 2 cars;
8% 3 or more cars

household size distribution (persons over the age of 16) -

15% 1; 55% 2; 19% 3; 8% 4; 3% 5 or more

percent over the age of 65 assumed equal to 12%

persons over the age of 16 and not working - set at 28% of

the total population

work trip time of day distribution - same one as was used
for the validation runs

model constants - set to the default value.

Ml runs were made under the assumption that no transit service

exists in the community. Three time periods: 6 AM - 9 AM (peak);

9 AM - 3 PM (off-peak); 3 PM - 6 PM (peak) were used in all cases;

one thousand entities were simulated in the non-work model. Unlike

the validation runs, where an attempt was made to estimate the range

around the final equilibrium value based on the results of each iteration,

for these runs the last (fifth) iteration was selected in each case as

the final value. Based on the results of the validation described in

the previous section, this approach probably introduces an additional

error of about 10% in the model results.
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5.3 Results of the Eighteen Runs

The key results of the eighteen runs are summarized in Table 5.8.

The implications of these results for population, fare and vehicle density

changes are discussed below.

Impacts of Population

Clearly a key determinant of ridership is service area population.

Table 5.9 summarizes the impact on ridership of increased population, for

a constant area size, vehicle density, and system fare . These results,

shown graphically in Figure 5.3, indicate that ridership will not increase

linearly with population, since supply will serve to somewhat constrain

DRT patronage. The most extreme example of this appears to be in the

change from a 50,000 to 75,000 population with a vehicle density of .5,

where only a 5% increase in ridership is generated because of tightly

constrained supply. The number of new trips per capita (of new persons

eligible for service) will increase with increasing vehicle density.

Impact of Fare Changes

Because the model is an equilibrium model, it is not a straight-

forward matter to determine the elasticity of demand with respect to fare,

i.e., to identify the impact of fare changes alone on demand since changes

in fare will cause changes in both demand and supply which in turn will

affect demand further. However, the model produces what might be referred

to as an equilibrium elasticity (as opposed to a pure elasticity) which

is very important in planning DRT fare levels. The results of fare

changes which are shown in Table 5.10 and Figure 5.4 lead to the following

observations

:
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Table 5.8 - Results of the Additional Runs

Average Ridership

Run //

Wait
Time

Ride
Time Work Non-Work Total Productivity

1 17.8 7.4 122 92 214 5.9

2 12.8 6.4 276 177 453 6.3

3 8.4 5.5 607 273 880 6.1

4 22.9 8.0 157 123 280 7.8

5 17.4 7.1 366 248 614 8.5

6 12.2 6.2 850 457 1307 9.1

7 26.3 14.4 453 333 788 6.6

8 18.4 11.8 1078 549 1627 6.8

9 29.0 15.7 519 307 826 6.9

10 20.6 12.3 1295 897 2192 9.1

11 19.6 7.3 343 331 674 9.4

12 15.2 6.8 371 147 518 7.2

13 20.6 11.5 1039 843 1882 7.8

14 15.6 11.0 1007 365 1372 5.7

15 23.7 12.3 1190 1174 2364 9.8

16 18.6 12.0 1149 444 1593 6.6

17 11.4 9.8 2386 1167 3553 7.4

18 13.5 10.9 2753 1621 4374 9. 1
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RIDERSHIP

Figure 5.3 - Ridership vs. Population
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Table 5.10 - Impact of Fare Change on Ridership

Base
Fare

Popu-
lation

% Change
in Fare

% Change
in Work
Trips

% Change
in Non-
Work

Implied*
Elasti-
city of

Non-Work
Trips

% Change

in Total
Trips

Implied*
Elasticity
of Total

Trips

.25 25,000 +100% + 6.7% -25.1% -.251 - 9.8% -.098

.25 50,000 +100% + 3.8% -34.9% -.349 -13.5% -.135

.25 75,000 +100% + 8.8% -23.6% -.236 - 7.8% -.078

.50 25,000 +100% + 1.4% -40.7% -.407 -15.6% -.156

.50 50,000 +100% - 6.6% -33.5% -.335 -13.5% -.135

.50 75,000 +100% -11.3% -50.5% -.505 -27.3% -.273

.50 25,000 -50% - 6.7% +33.5% -.670 + 9.7% -.194

.50 50,000 -50% - 3.6% +53.5% -1.070 +15.7% -.314

.50 75,000 -50% - 8.1% +30 . 8% - . 616 + 7.8% -.156

1.00 25,000 -50% - 1.3% +68.7% -1.374 +18.5% -.370

1.00 50,000 -50% + 7.1% +50.4% -1.080 +18.6% -.372

1.00 75,000 -50% +12.7% +102.0% -2.040 +37.6% -.752

*These are not true elasticities; rather, they represent the percentage
change in patronage resulting from a one percent increase in DRT fares,
given a constant supply, but not necessarily constant service quality.
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1) In most cases the demand for non-work trips is so much more
sensitive to fare than the demand for work trips, that a

decrease in non-work trips (resulting from an increase in

fares) actually causes an increase in work trips. This
again points out the dynamics of the work trip/non-work
trip interaction in the model. This result is reasonable,
since non-work trips have been shown to have a higher fare

elasticity than work trips in previous studies.

2) Demand (for non-work trips) is more sensitive to fare changes

at higher fare levels. This has also been demonstrated
in previous research on other urban transit services.

3) The resulting implied non-work trip fare elasticities range
from -.24 to -.50 for fare increases. These values bracket
the value of -.33, (the so called Simpson-Curtin value)
commonly used as a typical transit fare elasticity. Previous
research has suggested a somewhat higher fare elasticity
for DRT service, at least when fares are decreased. Table
5.10 also suggests significantly higher elasticities for

fare reductions.

Impact of Vehicle Density

The impact of vehicle density on demand is shown in Table 5.11 and

Figure 5.5. These results suggest that, at the demand levels being

considered, the supply actively constrains demand; a doubling in supply

will result in a virtual doubling of demand. This is somewhat counter-

intuitive and, indeed, there is no evidence available to indicate that

it will occur. On the other hand, there is also little in the way of

hard evidence to refute it, since few DRT systems have experienced a

doubling in vehicle fleet size with no other changes. Furthermore,

few DRT systems operate at vehicle densities of 2, with the corresponding

high service levels. Thus, it is difficult to conclude from the runs

performed to date how well the model predicts the impact of vehicle

density changes.

It is important to note that the experiments with vehicle density
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Table 5.11 - Impact of Vehicle Density on Demand

Population Vehicle Density Number of Vehicles Total Ridership

10,000 .5 3 214

10,000 1.0 6 453

10,000 2.0 12 880

25,000 .5 3 280

25,000 1.0 6 614

25,000 2.0 12 1307

50,000 .5 10 788

50,000 1.0 20 1627

50,000 2.0 40 3553

75,000 .5 10 826

75,000 1.0 20 2192

75,000 2.0 40 4374
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RIDERSHIP

Figure 5.5 - Ridership vs. Vehicle Density

(.Population, Area Held Constant)

137



of 2 are significantly beyond the range of calibration and validation.

Thus, it is difficult to assess the model's performance under these

conditions. It is strongly suggested that the model should only be used

with extreme caution, if at all, at such vehicle densities.
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5.4 Utilization of Model Results

In this subsection a procedure is developed to predict the patronage

of a DRT system which does not have characteristics exactly like those of

any of these hypothetical systems. This procedure is based on a series

of interpolations, using the tables and curves presented in the previous

subsection. The procedure has been tested by comparing the forecasts

derived using this procedure with actual ridership data for six DRT

systems. The results of these tests and their implications are discussed

later in this section.

The suggested procedure starts with selecting the set of results

for the hypothetical system which most closely resembles the system for

which forecasts are to be made. Of course, in some cases it may be

difficult to determine which is the closest case; however, in those

cases the starting point should not prove critical.* One by one.

adjustments are made to the results to account for differences between

the actual and hypothetical system characteristics. The step-by-step

procedure is intended to provide a first cut approximation of system

patronage. The suggested sequence of steps is presented below.

1 . Adjustments for Hours of Service

One clear difference that can exist between the hypothetical

systems and the one under consideration is service hours. The hypo-

thetical systems were analyzed for the period 6 A.M. to 6 P.M. This

approximates the service hours of a majority of DRT systems; however,

*This issue will be discussed further later in this section.
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some systems operate longer or shorter hours. It is not possible to use

the results to estimate ridership outside these hours, but it is possible

to estimate ridership for systems with fewer hours of service.

If a DRT system operates with fewer hours, it is possible to adjust

for starting times which are an hour or two later than 6 AM and/or ending

times an hour or two earlier than 6 PM. Based on the results of the

model presented earlier, almost all trips during these two periods will

be work trips; thus, it is these trips which must be considered. Recall

that the time of day distribution used for all runs was shown in Figure

4.3. If one assumes that the time of day distribution for DRT work

trips is identical to the overall work trip distribution, one can simply

scale down predicted trips based on the percentage of trips made during

the service hours. For example, consider that 10% of all work trips be-

ginning at home are made before 6 AM. Thus, the hypothetical systems can

draw from a market of work trips which includes 90% of all trips made.

(Note that since 10% of the workers cannot receive DRT service in the

morning, 10% are excluded from the afternoon market of workers even if

the service were to continue past 7 PM in the evening.) Now consider a

system which starts operation at 7 AM. According to Figure 4.3, only 50%

of all work trips are made after this hour. This system could draw from

only 50% of the total market, or 5/9 of the market served by the hypothe-

tical system. If the hypothetical system closest to the one being ana-

lyzed served 100 work trips, the latter system would be expected to serve

5/9 x 100 or 55 trips. Note that the hypothetical system is assumed to

have served 50 trips during the morning and 50 during the afternoon; the
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new system therefore serves 28 during the morning and 28 during the after-

noon .

Table 5.12 uses the time of day work trip distribution of Table 4.3

to develop factors by which the total number of work trips should be ad-

justed for a shorter service day.

The equilibrium nature of the model implies that a reduced number of

work trips during the afternoon will result in an increased number of non-

work trips for the same size system. Thus, if our hypothetical system

were to have 28 work trips during the afternoon period, rather than 50,

one would expect that some of these twenty-two trips that have been elimin-

ated (both morning and evening) because of a late starting time will be re-

placed by non-work trips. Obviously, this will occur only in the afternoon

period. As a first approximation, the procedure suggested here is based

on the assumption that 100% of all work trips eliminated during the after-

noon period would be replaced by non-work trips, if the system were in op-

eration throughout the evening peak. If, however, service on the DRT sys-

tem being modelled ends before 6 PM, then some of these new non-work trips

will also not be made by DRT. Suppose that in the above example (in which

22 work trips lost in the afternoon peak are assumed to be replaced by an

equal number of non-work trips), the DRT system ended service at 5:15 PM

rather than 6:00 PM. If one considers 4:00 to 6:00 PM to be the after-

noon peak, and assumes that the non-work trips in that time are uniformly

distributed, then service is available for only 75 minutes out of 120

minutes in the peak. This implies that only 75/120, or 62.5% of the 22

possible non-work trips will actually be made on DRT. That is, work

trips will decline by 22 and non-work trips will increase by 14.
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Table 5.12 - Factoring of Work Trips Based on Service Hours

Starting with X work trips:

If Service Starts
at

:

Reduce A.M. and*
P.M. Totals by:

If Service ends
at

:

Reduce A.M. an d
P.M. Totals by:

6:00 A.M, 0 4:00 P.M, .75 (|)

6;3Q -.223 (|) 4:30 .562 (y)

7 ; QQ .445 (|) 5:00 •375(|)

7:30 .611 (|) 5:30 .187 (y)

8:00 .778 (|) 6:00 0

8:30 .833 (|)

* Non-work trips should be increased by same amount during P.M. period
if service is available to 6 P.M. These non-work trips should be con-
sidered evenly distributed between 4 P.M. and 6 P.M. If the service
ends earlier, the total non-work trips added should be factored
down proportionately.
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To summarize the proposed procedure, the following steps must be

taken if the system in question begins after 6 AM or ends before 6 PM:

a) reduce work trips : Refer to Table 5.12 to determine the factor

by which work trips are to be reduced. Remember that either a

late start or an early closing will affect work trips in both

the morning and evening. If the system both starts late and

ends early, then two separate factors must be applied.

b) adjust non-work trips : A reduction in evening work trips due to

a late start in the morning will result in an increase in evening

non-work trips. It is assumed that evening non-work trips will re-

place lost evening work trips on a one-to-one basis if the system

operates throughout the evening peak. If the system is closed

during part of the 4 PM to 6 PM period, then the addition of new non-

work trips is reduced by the proportion of the 4 PM to 6 PM period

for which the system is not operating. Note that a late start, for

example, does not affect the total number of evening trips (work plus

non-work) unless the system also closes early.

2 . Vehicle Density and Vehicle Fleet Size

Vehicle density clearly plays some role in determining ridership.

Experiments with the supply model have indicated that travel time is a

function of vehicle density at a given productivity level. Thus a

system with eight vehicles operating in four square miles will exhibit

approximately the same travel time as a system with 16 vehicles in eight

square miles, if the productivity and trip lengths are the same in

both systems. However, it is difficult to translate this fact into a

relationship between productivity and ridership. The results for the

hypothetical systems are somewhat limited in this regard, since a

doubling of vehicle density in most cases also involved a doubling of

vehicle fleet size, making it difficult to distinguish between the

impacts of the two. Intuitively, it would seem that higher vehicle

fleet densities should allow improved service levels, and hence serve

to increase ridership.

Tables 5.8 and 5.11 allow some preliminary relationships to be
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developed. In the pairs of runs in which vehicle density was doubled, the

impacts on productivity varied somewhat with the average change over all

runs being 9.1%. Until additional data are available, it is suggested

that the average of these impacts be used. This implies that for a 100%

increase in vehicle density, one would expect a 9.1% increase in produc-

tivity. To compute the total ridership one would then multiply the pro-

ductivity by the total number of vehicles and the number of service hours.

As part of this process, the ratio of work to non-work trips resulting

after Step 1 would remain the same.

3 . Population

The impact of population on ridership was shown in Table 5.9.

The user should select the row in Table 5.9 which corresponds closest,

in terms of factors such as population and vehicle density, to the

system being considered. The adjusted ridership should then be estimated

by multiplying the calculated ridership from Step 2 by the following

factor

:

^ + (
True Population - Population of Hypothetical Case

^ ^
Population of Hypothetical Case

u , . _ . % change in ridership
, . m , , r _where k is the ratio ——-

—

6
; ; taken from Table 5.9.

% change in population

4 . Fare

Finally, ridership would be adjusted to account for fare difference

using the elasticities shown in Table 5.10. Again, as a first order

approximation, a simplification is suggested. Since non-work trips

have been shown to be much more sensitive to fare than work trips, and

since the impact of fare on work trips is dependent upon the dynamics
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of the model, it is suggested that fare be assumed to impact non-work

trips only. The user would find the base population and base fare

closest to the system under consideration, and apply the implied elasti-

city of non-work trips to fare to estimate the adjusted ridership.

To summarize the steps in the sketch planning procedure:

Step 1. Select most similar system : Select the set of results in

Table 5.8 for the system most closely resembling (in terms of area
size, vehicle fleet size, vehicle fleet density, population, and fare)

the system under consideration. Initial values for work and non-work
ridership are taken directly from Table 5.8. Denote these initial
values as follows:

work ridership = wrid^

non-work ridership = nrid-^

Step 2. Adjust for Differences in Operating Periods : If the system
operates for a shorter period than 6 AM to 6 PM, use Table 5.12 to

scale down the number of work trips. If service starts later
than 6 AM, the total number of non-work trips will be increased by
the number shown in Table 5.12. If service ends before 6:00 PM, this
number is adjusted by the fraction of the 4:00 PM to 6:00 PM period
during which DRT service is available. Denote the resulting values
as wrid

2
and nrid

2
for work and non-work trips respectively.

Step 3. Adjust for Differences in Vehicle Density : If the vehicle
density of the system under consideration is X% higher (lower) than
the vehicle density of the hypothetical system, increase (decrease)
the productivity by .091 (X%) . The base productivity to use for this
step is the productivity obtained after Step 2 is completed (based on

the number of vehicles in the test run). This should be very close
to the productivity in the test run.

Step 4. Compute Total System Ridership : Total ridership is now
obtained by multiplying productivity by vehicle fleet size by
service hours. The ratio of work to non-work trips should remain the
same as it was after Step 2, and both ridership figures should be
estimated. Denote the resulting values as wrid^ and nrid^ for work
and non-work trips respectively.

Step 5. Adjust for Differences in Population : If the population of

the system is different from that of the hypothetical system being
used, ridership should be changed by:

wrid
5

= ( 1 + P°E
p0

~

h

P°ph
• < k) > "rid

4

nr , ( ! +
Pops - P°Ph 00 ) nrid,

5 Poph *
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Where

:

wrid
nr id,.

Pops
Poph
k

= work ridership after Step 5
= non-work ridership after Step 5

= Population of the service area
= Population of the hypothetical service area
= Ratio of ridership to population increase from the

most appropriate row in Table 5.9

Step 6. Adjust for Differences in Fare : If the fare
under consideration is different than the fare of the
system, non-work ridership only should be adjusted by
formula

:

nrid
6

=
( 1 + Fa-leS- .

~-Za£.eH • (Elas)) nrid,
FareH

of the system
hypothetical
using the

Where

:

nrid
b

FareS
FareH
Elas '

wrid^

Non-work ridership after Step 6

System fare
Hypothetical system fare
The most appropriate implied elasticity of non-work
ridership with respect to fare from Table 5.10.

(Base fare, population, and direction of fare
difference are the factors that determine which
elasticity to use)

Work ridership after Step 6 = wrid^
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5.5 Application of Suggested Procedure

The procedure suggested in the previous subsection has been used

to forecast ridership in six existing DRT systems. To illustrate its

use, a step by step description of its application is provided for each

example.

The characteristics of the systems considered are compared with

the characteristics of the hypothetical systems most resembling these

systems in Table 5.13.* The first two lines for each row contain the

information for the city and the run having the characteristics closest

to that city. The third line contains the resulting revised ridership

predictions after the application of the suggested procedure. The

arrow in each case indicates the comparison that should be made between

each city's observed ridership and the adjusted run forecast.

*Data on these systems were obtained primarily from Ewing, R.H. and
N.H.M. Wilson, "Innovations in Demand-Responsive Transportation,"
M.I.T. Research Report, October, 1976. Additional data on Rochester
was obtained from the Rochester SMD demonstration staff at M.I.T.

;

additional data on El Cajon and Merced were obtained from the UMTA
Small City Transit Reports on those cities.
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Merced, California

Step 1 . The Merced system is most similar to the system represented
by Run Number 4. Starting ridership values therefore are:

Work ridership = wrid^ = 157 Non-work ridership = nrid^ = 123

Step 2 . The Merced system starts at 7:15 AM and ends at 5:15 PM.

Referring to Table 5.12, the number of work trips (AM and PM) should
be reduced by .528 x 157 = 82 because of the late AM start (.528 is

midway between the factors which would be used for 7:00 AM and 7:30
AM starts), and by .281 x 157 = 44 because of the early end of service.
Afternoon non-work travel would be increased by 82/2, or 41 trips,
if service extended to 6 PM. Because it extends until 5:15 PM only
(i.e. service is available for only 75 minutes out of the 120 minute
afternoon peak period), non-work ridership is increased by .615 x 41,

or 26. Thus:
wrid

2
= 31 trips nrid

2
= 149 trips

Step 3 . The vehicle density in Merced is .35 vs. the vehicle density
in run 4 of .5. For the 30% decrease in vehicle density, productivity
is decreased by 30 x .091 or 2.7%. The productivity after Step 2 is

given by
31 work trips + 149 non-work trips = 6 tr ips/vehicle hour

10 hours X 3 vehicles

Thus the productivity after Step 3 is 5.8 trips/vehicle hour.

Step 4 . Total ridership = 5.8 trips/vehicle hour X 3.5 vehicles X
10 hours = 203 trips.

Retaining the same ratio of work to non-work ridership:
wrid^ = 35 work trips nrid^ = 168 non-work trips

Step 5 . The population of Merced is slightly lower than that of run 4.

Turning to Table 5.9, the most appropriate value of ratio k is .205,

for a system with three vehicles and a population of 10,000. Applying
the formula:

wrid
5 = (1 +

2
~

00Q
(.205) )35 = 34 work trips

wridr = (1 + o c-^nnn
(-205) 168) = 165 non-work trips

Step 6 . The Merced fare is 25c, rather than the 50c fare used in

run 4. Based on Table 5.10, the most appropriate implied elasticity
(base fare of 50d, population of 25,000) is -.670. Using the formula:

wrid^ = wrid^ = 34 work trips

nrid,. = (1 + — * ^-> (-.670) ) 165 = 220 non-work trips
6 .50

Total Ridership = 254 trips
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Ludington, Michigan

Step 1 . The Ludington, Michigan system is most similar to the system
represented by run 2.

wrid-^ = 276 work trips nrid^ = 177 non-work trips

Step 2 . Service hours are identical to the base run, and no adjustments
are therefore necessary.

wrid
2
=276 work trips nrid

2
= 177 non-work trips

Step 3 . Vehicle density is .8125 rather than 1.0 in the base case,
so

Revised productivity = (1 - .017) 6.3 = 6.2 trips/vehicle hour

Step 4 . Vehicle fleet size is 2.6, so

Total ridership =2.6x12x6.2= 193 trips

wrid, = 117 work trips nrid. =76 non-work trips
4 4

Step 5 . Population is 10% lower. A value of k of .236 applies in

this case (see Table 5.9 for vehicle density of 1 and a population of

10
, 000 )

wridj. = (1 +
-1000

(.236)
10,000

wrid,- = (1 +
-1000

(.205)
10,000

) 117 = 114 work trips

) 76 = 74 non-work trips

Step 6 . The fare is 25c rather than 50c for Run 2. Elasticity of

-.67 applies again (see Table 5.10).

wrid
6

nrid
6

114 work trips

(1 + (-.67) ) 74

Total Ridership = 214 trips

100 non-work trips
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El Cajon, California

Step 1 . The El Cajon system is most similar to the system represented
by Run 7

.

wrid^ = 453 work trips nrid^ = 333 non-work trips

Step 2 . Service is provided all day in El Cajon; the figures presented
are for the 6 AM to 6 PM period; thus no adjustments are necessary

wrid^ = 453 work trips nrid£ = 333 non-work trips

Step 3 . Vehicle density = .75 in El Cajon vs. .5 in Run 7.

Revised productivity = (1 + (.091) (.5) ) 6.55 = 6.85 trips/

vehicle hour

Step 4 . Vehicle fleet size = 9

Total ridership = 9 X 12 X 6.85 = 739 trips

wrid^ = 426 work trips nrid^ = 313 non-work trips

Step 5 . Population is 4% higher. A value of k of .096 applies

wrid = (1 H
2,000. (.096)) 426 = 428 work trips

5
U

50,000

nrid
5

= (1 + 5§°{j{j
-

Q
(- 096 )) 313 = 314 non-work trips

Step 6 . Fare is the same, therefore:

wrid, = 428 work trips nrid = 314 non-work trips
n 6

Total ridership = 742 trips
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Niles, Michigan

Step 1 . The Niles system is most similar to the system represented
by Run 1

.

wrid^ 122 work trips nrid 92 non-work trips

Step 2 . Service hours are the same; no adjustment necessary

wrid^ = 122 work trips nrid^ = 92 non-work trips

Step 3 . Vehicle density is .71 in Niles vs. . 5 in Run 1

Revised productivity = (1 + (.42) (.091)) 5.9 =6.1 trips/vehicle hour

Step 4 . Vehicle fleet size = 3.7

Total ridership = 271 trips

wrid = 154 work trips nrid. = 117 non-work trips

Step 5 . Population is 30% higher; a value of k of .205 applies.

wridj- = (1 + (.3) (.205) 154 = 163 work trips

nrid;_ = (1 + (.3) (.205) 117 = 124 non-work trips

Step 6 . Fare is 25c in Niles vs. 50c for Run 1. An elasticity of -.67

applies

.

wrid = 163 work trips
6

nrid^ = (1 + (~-5) (-.67)) 124 = 166 non-work trips

Total ridership = 329 trips
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Oneonta, New York

Step 1. The Oneonta system is most similar to the system represented
by Run 1.

wrid^ 122 work trips nrid. 92 non-work trips

Step 2 . Service hours are the same. No adjustments necessary.

wrid^ = 122 work trips nrid^ = 92 non-work trips

Step 3 . Vehicle density is .268 in Oneonta vs. .5 in Run 1.

Revised productivity = 1 - (.46) (.091) 5.9 = 5.7 trips/vehicle hour

Step 4 . Vehicle fleet size = 4.7

Total ridership = 253 trips

wrid^ = 144 work trips nrid^ = 109 non-work trips

Step 5 . Population is 60% higher. A value of k of .205 applies,

wrid^ = (1 + (.6) (.205) ) 144 = 162 work trips

nrid
5 = (1 + (.6) (.205) 109 = 122

Step 6 . Fare is 25c in Oneonta vs. 50p in Run 1.

-.67 applies.

wrid = 162 work trips nrid, =
6 6

Total ridership = 325 trips

An elasticity of

163 non-work trips
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Rochester, New York*

Step 1. The Rochester system is most similar to the system represented
by Run 9.

wrid^ = 519 work trips nrid = 307 non-work trips

Step 2 . The Rochester system began providing many-to-many service at

8 AM, continuing to 10 PM. (The figure in the Table 5.13 is the 8 AM
to 6 PM ridership.) Referring to Table 5.13, combined AM and PM work
trips should be reduced by 403 for the start. Afternoon non-work
travel should be increased by 403/2, or 201 trips.

wrid^ = 116 work trips nrid
2

508 non-work trips

Step 3 . The vehicle density in Rochester is .293 vs. . 5 in Run 9.

Revised productivity = (1 - (.41) (.091) ) 6.24 = 6.0 trips/
vehicle hour

Step 4 . Vehicle fleet size = 4.4.

Total ridership = 264 trips

wrid
4

49 work trips nrid

,

215 non-work trips

Step 5 . Population is 6.67% lower in Rochester. A value of k of

.096 applies.

wrid,. = (1 - .067 (.096) ) 49 = 49 work trips

nrid = (1 - (.067) ) 215 = 214 non-work trips
5

Step 6 . The average fare in Rochester is 87.54c (since additional
passengers travelling together pay only 5c) • Based on the results in

Table 5.10, the most appropriate elasticity is -.505.

wrid^ = 49 work trips

nrid = (1 - (.75) (.505) ) 214 = 133 non-work trips
6

Total ridership = 182 trips

* The ridership data for Rochester in Table 5.13 was obtained one year
after the data used for calibrating the model system. Some parameters
of the DRT operation changed during that time period.
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5.6 Selection of a Starting Point

One of the more difficult elements of the analysis is selecting

the appropriate starting point. Because of the limited number of sample

points, it is at time difficult to identify a hypothetical system which

is very similar to the system being considered. The following basic

guidelines can be offered for selecting the appropriate starting point:

1) Since population is a service area characteristic not under the

control of the analyst, and since the impact of population on ridership

is not at all intuitive, matching population figures as closely as

possible is of highest priority in choosing a base run.

2) The second most important attribute of a DRT system to match with

a base run is vehicle density.

3) Service area size and vehicle fleet size of the hypothetical system

are more or less given after vehicle density is determined. The only

other data item to consider is then fare.

To test the impact of the choice of starting point on the procedure,

the Ludington analysis was performed three times using logical starting

points. The results of these tests are presented in Table 5.14.

Table 5.14

Results of Ludington Analysis with Different Starting Points

Area (Square
Mi.)

Population Veh.
Fleet

Veh.
Density

Fare Total
Ridership

Ludington 3.2 9,000 2.6 .81 .25 240

Run 2 as starting
point 6 10,000 6 1.0 .50 214

Run 1 as starting
point 6 10,000 3 .5 .50 215

Run 11 as starting
point 6 25,000 6 1.0 .25 242
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The results indicate that the choice of a starting point does not have

a major impact on the results. The spread between the upper and lower

bound was only 12% (of the upper bound) . While these results for only

one city cannot be considered conclusive, they do suggest that one need

not be overly concerned about selecting the "best" starting point.
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5.7 Evaluation of the Results

An examination of the results in Table 5.13 seems to indicate that

the runs reported in this chapter, together with the suggested procedure

for manipulating the results of those runs, can be used to predict total

DRT ridership fairly accurately. Table 5.15 summarizes the percentage

error in total ridership estimation for each of the cities.* These

errors, which range from -17.3% to 32.5% for trips excluding school

trips, and -25.2% to 32.5% including school trips, with an absolute

level range from A . 8% to 32.5%, are well within the bounds established

by the validation runs for the entire model system. Furthermore, as

was the case with the validation runs, the errors are not consistently

positive or negative. This provides further evidence that the model

can provide a reasonable forecast of DRT demand. It suggests further

that the results and procedures presented in this chapter can be used

as the basis of a preliminary sketch planning model, which provides a

first cut approximation of total DRT ridership.**

A closer examination of the results, however, seems to confirm a

tentative conclusion reached after the validation runs; namely, that

the work model is a consistent overpredictor of demand. The overpre-

* Since, as noted earlier, it is not clear whether predictions should be
compared with figures which include school trips, the error has been
calculated both including and excluding school trips (wherever data
on school trips were available)

.

**Note that once demand estimates have been made, the supply equations
presented in Appendix B can be applied by hand to estimate level
of service.
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Table 5.15 - Percent Errors in Prediction

Location Error in Total
Trips Excluding School

Errors in Total
Trips Including School

Merced 21.0% -25.2%

Ludington -10.8% -10.8%

El Cajon 32.5% 32.5%

Niles 26.5% 26.5%

Oneonta 4.8% -7 . 1%

Rochester -17.3% -17.3%
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diction again appears to be in the range of 2 to 1 for three of the

six cities; in one case (El Cajon), however, the prediction for work

trips is 428, while actual work trips is 5.* This large difference

may be in part understandable when one looks more closely at the El

Cajon system. El Cajon is a shared-ride taxi system geared largely

to the elderly. As noted in the Davenport case, a taxi system, even

if it operates in a shared-ride mode, might not be used for the work

trip for psychological reasons not directly considered by the model.

For non-work trips. Table 5.13 indicates that the model seems

to be fairly consistently underpredicted, but as discussed in Section

4, this is due in part to the overprediction of work trips.

Given this additional information on the amount of overprediction

from the sketch planning runs, one suggested change to the model system

would be a further adjustment of the constant of the work trip model

to better reflect the data from these additional cities. While there

were differences in the validation cities between observed and predicted

trips, it was not clear if the model would consistently overpredict work

trips or not, primarily because of the school trips component which

was not being explicitly modelled. Therefore, no change was recommended

at that point in time. However, based on the 18 runs and the comparison

with six additional cities, indications are that an adjustment of the

work trip constant may be appropriate. To test the sensitivity of work

trips to changes in the constant and the resulting effect on non-work

*In two cases, Merced and Rochester, both of which began DRT service
later than 6 AM, the work trip forecasts are exceptionally accurate.
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trips, one additional run was carried out using Run 1 as the base.

Table 5.16 summarizes the results of an arbitrary decrease in the DRT

mode constant from 2.085 to 0.0, predictions for wait time, ride time,

ride distance and for work, non-work and total trips are given. As

expected, work trips decrease, and in this specific case by 57% (29 trips),

while non-work trips increase by 163% (13 trips) and the effect on total

trips is an overall decrease of only 27% (16 trips).

While these results are only preliminary , they do serve to indicate

a useful direction to explore in making further improvements to the model

system. Because of time and budget limitations, however, no further com-

parison or adjustments were made.
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5.8 Conclusions

The results presented in this chapter suggest that the additional

model. runs, and the sketch planning procedure can be used

to provide first level approximations of total DRT ridership. The

expected reliability of this approach, based on six examples, seems to be

accurate within +30% of the actual value. This level of accuracy cer-

tainly represents an improvement over existing sketch planning tools.

However, the results at this time are presented as only a preliminary

sketch planning tool. It is felt that there have been too few runs

made so far to fully develop the sketch planning procedure. With few

data points available, the interpolations that must be made are quite

major, and there may be too many equally good (or poor) starting points

when applying the procedure. Furthermore, a number of the data points

appear to be based on system characteristics beyond the range of most

existing systems. More runs would be desirable to reduce the number of

interpolations needed, to develop better and easier-to-use graphics,

and to obtain a better estimate of the impact of certain factors, such

as vehicle density. Users planning to use the model results as a sketch

planning tool are cautioned that the sketch planning procedure is in the

preliminary stages of development.

If the sketch planning procedure is used, the resulting projections

will, in some cases, be sufficient for preliminary estimation and pre-

liminary sizing of systems. In other cases, a planner might use the

results of this type of analysis to help decide whether more detailed

analysis using the entire model system is warranted. For both cases.
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the sketch planning tool can eliminate the need to develop the extensive

data base required to run the full model system and/or perhaps reduce the

number of runs required by the full system in testing alternative designs.
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SECTION 6

CONCLUSIONS

6.1 Summary of Study

This report has described the design, development, implementation

and validation of a detailed patronage forecasting model for demand

responsive transportation (DRT) systems. The model system utilizes

disaggregate travel demand models for predicting both work and non-

work trips in conjunction with a level of service prediction capability.

Preliminary specifications of the demand models were based on data

from Haddonfield, New Jersey and a suburb of Rochester, New York.

Because of unsatisfactory results in both cities, the final work

trip model was estimated only on Rochester data (because of larger

sample size and more reasonable results). The final model was then

constrained to incorporate one variable (the cost coefficient) that was

insignificant in virtually all estimations, but which was deemed essential

for forecasting purposes. The coefficient selected was derived from prior

studies of work trip mode choice.

The non-work trip model represents a significant methodological

advance over prior models. It explicitly allows for variations over the

day in the propensity of people to travel and also includes complex

tours; existing models used in practice only represent simple tours,

i.e. trips which leave home, visit one location and return home. The

non-work model not only represents a travellers choice of mode, but

also the choice of destination. Thus, the model is capable of fore-

casting how DRT service will alter the pattern of non-work travel in

an urban area. The entire set of demand model components and their

interrelationships are documented in detail in Appendix A.
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The level of service, or supply, model is a set of equations which pre-

dict period by period DRT average systemwide wait time and ride time on an

origin - destination basis. These equations (described in Appendix B)

were estimated using data generated with the MIT simulation model, which

in turn was validated using data from the Haddonfield DRT system. While

originally intended for use in the overall model system, the service

prediction equations can be used as simple, stand alone forecasting

models

.

Demand and level of service models are solved simultaneously to

obtain the equilibrium travel pattern. This solution involves an

iterative procedure that attains an approximate equilibrium very close

to the true equilibrium. The number of iterations is user-controlled,

and experiments indicate that little additional accuracy is gained after

four to six iterations. Because the entire model involves a stochastic

simulation, using more iterations tends to produce random fluctuations

around the true equilibrium that provide little additional information.

The model system has been implemented in a computer software package

(documented in Appendix C) and applied in a set of highly simplified

prototypical cities representing a wide range of DRT systems. The

resulting forecasts serve as a sketch planning tool which can be used

by planners who lack the time or resources to use the detailed model

system. It requires a simplified description of the area being served,

the DRT system design including fleet size, fare, service area size, and

service area population.

Validation tests indicate that both the detailed and sketch planning

models predict total daily ridership (passengers per day) reasonably well
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(within approximately 30% of actual ridership levels) . The observed

errors are much greater when patronage forecasts are disaggregated into

work and non-work travel; with the model consistently overpredicting

work trips by a factor of two.

Forecasts from the sketch planning model were compared with data

from six additional existing DRT systems in the U.S. As in the valid-

ation of the detailed, computer-based model system, the total daily

patronage forecast was reasonably accurate (again, the error was less

than or equal to + 30%). However, the percentage of DRT work trips

forecast appears to be high (again) by a factor of two, reflecting the

same shortcoming of the work trip demand submodel isolated in the

earlier validation efforts. A comparison of the non-work model by itself

on data that was available for two of these six cities indicated that the

non-work sketch planning model showed errors of less than 30% and

suggest that it might also be used as a first approximation for off-peak

design and evaluation.

6.2 Use of the Results of this Study

The detailed model and the sketch planning version provide planners

of potential DRT systems with a method for forecasting demand for

alternative systems. Obviously, final planning decisions will also

depend on local conditions such as wage rates, other costs, the availa-

bility of funds for subsidies which are outside the scope of the model.

The model results should be used outside the range over which the model

was estimated only with extreme caution. It should be used only to

provide a reasonable initial estimate of potential DRT patronage .
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The following issues relate to the use, misuse and limitations of

the model.

1) The model is based on an assumption of long term equilibrium

which is not likely to be valid in the first year of DRT system operation

during which time patronage is likely to rise relatively rapidly. In

this phase, knowledge of the system is still spreading among the service

area population by advertising, news media reports and word of mouth.

DRT planners should not expect the ridership that is forecasted to be

attained in this early phase.

2) Ridership levels can often be altered by tapping transportation

markets which are not explicitly included in the model. For example,

many DRT systems offer charter and school service in the off-peak hours

to utilize vehicles which would otherwise be idle.

3) Attitudinal studies such as those conducted by Gustafson and

Navin (1972) have indicated that DRT patronage may be influenced by many fac-

tors which are difficult to quantify. On-board surveys have often indicated

that travellers find friendly and courteous drivers and a perception of

physical security to be quite important. These effects are included in

the model in the sense that user perceptions in Rochester are reflected

in the coefficient estimates. Cities with more or less personalized

services may be able to produce travel environments which are perceived

as considerably better or worse than this case; demand levels will in

all likelihood reflect such differences. Users of the model should

apply their own judgment of the local potential for better DRT services

in using the model’s forecasts.

4) The models have a limited range of validity, and are unlikely to
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prove useful in service areas which are extremely densely or

sparsely populated, too large or small, have a great number of vehicles

or otherwise vary in some major way from the calibration site. Attempts

to utilize the models in such situations may produce unrealistic forecasts.

5) No model yet developed can be applied in many different geographic

areas with consistent success. It is always possible to find cases in

which a model "doesn't work", and there is always a non-zero probability

that the models will be in error in any situation. For this reason,

users of the model are advised to compare forecasts with data on prior

bus usage, taxi ridership and DRT patronage levels from cities that

are similar to the one being studied as a check on the reasonableness

of the forecasts. Differences between the model's forecasts and the

other sources should be at least qualitatively explainable in terms of

fare differentials, variations in service levels or amenities and other

factors

.

6) Sensitivity analysis should be included in any application of the

models. For example, if a five vehicle fleet is planned, users should

consider at a minimum how four and six vehicle fleets would perform.

Users may also wish to explore how varying assumptions about the service

area population, work trip time of day distribution, the socioeconomic

distribution, etc. affect the final patronage forecast.

7) In some cases the DRT service concept used may differ from the

pure, many-to-many concept used in the model calibration. Use of both

the detailed and sketch planning models in these situations will require

simplification of the proposed DRT system (as discussed in Section 3)

and some judgment in interpreting the resulting forecasts.
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6.3 Future Research

As with virtually all studies which seek to develop an entirely new

model, the research described in this report has opened a number of

important research areas which have been only briefly considered.

Further efforts at improving the usefulness of the model to practicing

planners, developing more accurate demand and level of service models,

validating the model in other cities, incorporating the capability to

forecast bus trips, and improving the computational efficiency of the

software all offer potentially high yield.

Specific research areas can be logically grouped into three categories

as follows:

1) minor improvements to the usefulness of the existing model system

and software package;

2) further validation of the model and making necessary adjustments

on an ad hoc basis;

3) estimating new model components and implementing them in the

model system.

In the first category, the following improvements in the usefulness

of the existing model system and software package are most needed:

1) development of more detailed user documentation including

additional examples and more extensive guidelines on data preparation;

2) use of the model by planning agencies to identify which aspects

of the model and its associated documentation are least understandable;

this would lead to revisions in the model and the documentation as well

as a "case study" report for use by other planning agencies;

3) further analysis of the level of service forecasting models as

potential "stand alone" aids to DRT system design.
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The following additions to model validation are suggested:

1) testing the detailed model on additional DRT sites; for example,

a system such as Irondequoit discussed in Section 3 offers a more complex

service than either Davenport or LaEabra;

2) sensitivity analysis to determine how errors that may exist in

the model affect the patronage and level of service forecasts;

3) further tests of the level of service submodel against data from

existing DRT systems.

Finally, the following new model development tasks are suggested:

1) estimation of a fixed route bus mode utility function in both the

work and non-work demand models; this may require some new data collection

and a restructuring of the travel demand models to reflect interdependency

between DRT and fixed route bus modes;

2) improvement of the work trip mode choice model;

3) re-estimation of the demand models to specifically reflect variations

in travel behavior across specific socioeconomic groups, or market segments,

such as the elderly or poor;

4) estimation of the existing models in another city to assess the

transferability of the coefficients;

5) improvements in the level of service models so that the effective

vehicle fleet (accounting for breaks due to driver shift changes) could

be forecast and alternative dispatching algorithms could be better repre-

sented .

6) incorporation of travel time reliability in both the demand and

supply submodels.

Each of these research tasks can potentially improve the usefulness

and accuracy of the detailed model system. However, further development
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and testing of the sketch planning procedures (including improvements

suggested in Section 5 to more realistically reflect work trip usage of

DRT) would be of greatest value to most planning professionals, parti-

cularly those in smaller cities. We believe that this last research

area should receive the highest priority, since it will be both rela-

tively inexpensive and of major importance to the local planning commu-

nity.
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APPENDIX A

DEMAND MODEL: TECHNICAL DOCUMENTATION

A.l Introduction

In the main body of this report, a brief, non-technical overview of both

the work and non-work trip demand model is presented. This appendix is a

detailed description of these submodels, and provides the inter-

ested user with a more substantial description of the basis for the

demand forecasts produced by the model.

The next subsection is a brief description of choice theory, the

general methodology used in the demand modelling effort; readers fami-

liar with this subject may wish to skip this section. Subsection A.

3

is a description of the data used for model calibration and a discussion

of how choice-based samples were utilized to estimate the models. The

following two subsections, A. 4 and A. 5, describe the work and non-work

demand models respectively, including the coefficient estimates of the

final models and some general discussion of the alternative specifica-

tions tried and why they were ultimately rejected in favor of the models

presented

.

A. 2 Disaggregate Choice Model Theory*

Until relatively recently, travel demand models were generally

oriented towards representing the behavior o f £~~-:ps of travellers, i.e..

More detailed reviews of disaggregate choice theory and choice models can be

found in a variety of references including: Luce and Suppes (1965), McFadden

(1973 and 1974), Ben-Akiva (1973) ,Lerman (1975), Domencich and McFadden (1975)

and Richards and Ben-Akiva (1975).
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residents of a particular traffic or analysis zone. However, in a study of

choice of mode,, Warner (1962) suggested and applied a far sounder approach which

focused on the behavior of individual travellers. This approach, currently

termed disaggregate choice modelling or disaggregate behavioral modelling,

has since been the central thrust of travel demand research.

Disaggregate choice models are based on the decisions of individual

households or travellers; hence, they eliminate the need for aggregating

various segments of the population either geographically or demographically .

*

Disaggregate choice models can be estimated using very small samples and

hence offer the potential for significantly reducing data collection costs.

However, most importantly, disaggregate choice models are based on a clear,

credible and consistent theory of how decision makers choose among availa hLe

alternatives

.

Choice theory is concerned with the behavior of an individual decision-

maker confronted with a mutually exclusive set of alternatives from which

one and only one can be selected. The individual decision-maker, n, asso-

ciates some level of utility with each available alternative, denoted by i.

Denote this utility as U. . We denote the set of alternatives available to
in

individual n as A .

n

Following the development of Lancaster (1966), each alternative and

decision-maker can be characterized by a set of attributes. Thus, the

utility of the i-th feasible alternative to decision-maker n can be expressed

as follows:

&
Studies of data about one facet of travel demand, trip generation, by Fleet

and Robertson (1968) and McCarthy (1969) indicate that the aggregation of

behavior at the zonal level may so reduce the variability in the data that

most of the behavioral sensitivity of trip-making to transportation level of

service is lost.



where

:

A-
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U. = U. (X.

,

S )
in in 1 n

U. is the utility of alternative i to individual n:m
X^ is a vector of attributes describing alternative i;

S is a vector of attributes describing decision-maker n.
n

A more convenient expression for the utility function can be developed

by defining a vector Z. = g(X.,S ), where g is some vector valued function.
in 1 n

Thus we can now write U. = U. (Z. ).
in m m

Each decision-maker is assumed to evaluate the attributes of every

alternative and select the one yielding the greatest utility. However,

since some of the attributes are unobserved, variables are improperly mea-

sured, or utility relationships are mis-specif ied , it is in general im-

possible for an observer to ever determine precisely which alternative any

decision-maker will select. However, with suitable assumptions about the

distribution of the unobserved elements in the utility function, it is

possible to predict the probability with which any alternative will be

selected. When each utility is a random variable, the probability that

alternative i is selected from any set of alternatives A is:
n

Pr (i 1 A ) = Pr (U . (Z. ) > U. (Z. ) for all jeA ).
n xnin — jnjn n

Within the class of random utility model forms, the most generally

applicable have been what Manski (1975) defines as LPAD, linear in the

parameters with additive disturbances. In this case, it is assumed that

U. = BZ. + e.
,in in in

where

:

B is a vector of parameters and £. is a random variable.
in
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The LPAD form selected for this study is the multinomial logit model.

This particular model was chosen for a variety of practical and theore-

tical reasons, including the lack of alternative methods for modelling

decision problems with large choice sets and the substantial base of

successful prior applications which exists. The logit model relies on the

assumption that the £ 's are independently and identically distributed as

double exponentials, i.e..

P (e<oo) = exp
, - (ot + oj)
(e )

Using this distribution, McFadden (1973) demonstrated that

The parameters of this model can be estimated by maximum likelihood.

Such estimates are consistent, asymptotically normal and asymptotically

efficient. McFadden also demonstrates that under relatively weak condi-

tions such estimates exist with probability approaching unity and are

unique

.

Note that the set of available alternatives, A , can vary from decision-
n

maker to decision-maker. For example, a traveller without a driver's license

or an available automobile would not generally be viewed as having the al-

ternative of driving alone available.

The initial applications of this modelling technique to travel demand

were for travellers' choice of mode (e.g. Warner, 1962; Lisco, 1967; Lave,



1969; McGillivray, 1972; and Peat, Marwick and Mitchell, 1973'.). The

first extension of disaggregate models to a problem involving other

travel choices was made in a study by Charles River Associates (1972)

for the Federal Highway Administration. In this study, the logit model

was applied to the choices of frequency, destination and mode for shopping

travel. However, these choices were modelled in a sequence, thereby im-

posing a strong, and statistically unsupported structure on these de-

cisions .
*

Ben-Akiva (1974) extended the application of choice theory to include

various combinations of travel choices by applying the multinomial logit

model to shopping destination and mode choice. In this approach, each

feasible combination of modes and destination was treated as a distinct

alternative, one of which is chosen. Adler and Ben-Akiva (1975) extended

this work by including the possibility of not travelling at all in the

set of alternatives.

*
Note that it is possible to estimate a logit model of a joint process
using a sequentially applied estimator. However, such estimates are
less efficient than the more usual maximum likelihood estimates.



A. 3 A Notational Convention

In order to describe the model estimation results, the utility of every

alternative will be defined as

V = 8
1

Z
1

+ 6
2

Z
2
+ Z

3
+ • BK

Z
K

where every alternative has the same set of k coefficients (3 . ..3„)
-L K

When there are some coefficients which pertain to the utility of one alternative

but not others, the value of Z for that variable will be defined as alternative

specific, i.e., having a value of zero in all alternatives except the

relevant one.

A simple example will illustrate this convention. Suppose we wished

til
to define a utility function for the drive alone mode which had the k variable

equal to autos per household member over 16 years of age. The term in the

utility function would therefore be

3k\ 6 ., (

autos in household
number in household over 16

-)

Suppose further that we did not want this term to appear in any other utility.

By the proposed convention, the kth variable in the utility of every alternative

would be defined as

Z
k

=
autos in household

number in household over 16
for drive alone mode

0 otherwise



By using this convention, we can easily express even very complicated utility

relationships. As a shorthand notation, it will be convenient to subscript

variables to denote the alternatives to which they pertain. In this

simplified form, the subscripts DA, SR and DRT will denote driving alone,

sharing a ride and using DRT (either for access or directly) respectively.

When it is necessary to distinguish the direct from the access DRT modes,

the subscript DIRECT and ACCESS will be used. For example, if we were to

define the number of automobiles per household member over 16 years of age

as AA16, then the notation AA16^. would define a variable as follows
DA

Variables without any subscript will be by definition generic or non mode

specific. Thus, a variable for in-vehicle time, denoted as IVTT, without a

subscript would take values as follows:

autos per household member over 16 in the drive
AA16 = Malone utility

DA /

vO otherwise

IVTT = in-vehicle time by shared ride mode in the shared
ride utility

in-vehicle time by DRT mode in the DRT utility

In contrast, the notation IVTT would denote a variable
JJA

in-vehicle time by drive alone mode in the drive
J alone utility

( 0 in other modes

Table A.l lists all the variable definitions used in the work and non-

work models. Note that some of the variables were used only in early model



A-

8

Table A.l

Notation for Models

CONST AO, 1 constant term (always subscripted)

AA16 Autos per household member over 16 years

AALIC Autos per household member with a drivers' license

AGE1 1 if under 16 years old, 0 otherwise

AGE2 1 if over 65 years old, 0 otherwise

INCOME Household annual income in dollars

HHSIZE Household size

SEX 1 if male, 0 if female

IVTT In-vehicle time (in minutes)

OVTT Outrof-vehicle time (in minutes)

OPTC Out-of-pocket cost (in cents)

DIST Distance of trip (in miles)

POP* Total population of zone

TOTEMP* Total employment of zone

RWEMP* Retail and wholesale employment in zone

RWEST* Number of retail and wholesale establishments

AREA* Zonal area, in square miles

*
used in non-work models which involve destination choice
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specifications described in later sections of this appendix and do not

appear in the final model forms. Other variables which describe the

attributes of destinations are used only in the non-work model, where

choice of destination is part of the choice model structure.

Variables in this table can easily be combined to define new variables.

For example, the notation IVTT + OVTT defines the sum of in-vehicle and out-

of-vehicle time or total trip time. AGE1 + AGE2 is a socioeconomic variable

which takes a value of one if a traveller is either under 16 or over 65

years of age.

In the logit model all of the socioeconomic variables (as well as the

constants) must of necessity be defined with a subscript. Treating socio-

economic characteristics as generic (i.e., as appearing in the utility function

for all modes with the same coefficient) results in a model which can not be estimated.

As a final convention, each model reported in the following sections

will be followed by five summary statistics:

1) number of observations - the count of trips actually used in the

estimation of the reported coefficient estimates;

2) number of cases - the total number of alternatives available to all

the observations minus the number of observations used in the model estimation

(this equals the number of degrees of freedom in the estimation results);

3) L*(0) - the value of the log likelihood function when all the coef-

ficients are zero
;

4) L* ($) - the value of the log likelihood function at the maximum

likelihood estimates;
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Where appropriate, model coefficients will be presented with their

corresponding "t"-statistics . (In theory, these values are only asymtotically

normal, but in reasonably large samples they can be used as true t-values with-

out significant error.) Due to the use of choice-based sampling, these values

differ slightly from the correct t-statistics in some preliminary runs.

In these cases, they still serve to indicate the general significance

of the coefficients. In the final non-work model summaries, the + -

statistics were corrected by use of a procedure documented in Manski

and Lerman (1977).
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A. 4 The Calibration Data Set

All the modes estimated in the course of the study were based on data from

one of two DRT service areas: Haddonfield, New Jersey and Rochester, New York.

For reasons discussed in Subsection 2.1 of the main report, the final

models were all based on the Rochester data.

Each of the two data sets included three basic classes of information:

1) a survey - Both data sets included the results of a home interview

survey of DRT service area residents. In the case of Haddonfield, this survey

was the third of three home interview surveys performed by the MITRE Corporation

as part of the monitoring of the Haddonfield service. The key shortcoming of

this survey was that all trips leaving the service area had their destination

noted only as a single code, to indicate that they were external. This factor,

along with non-reporting of either origin or destination, eliminated 1756 of

the 3213 trips made by the Haddonfield survey respondents. Other problems

with the data included non-reporting of information (29.8% of the households

did not respond to the income question) and the existence of four distinct

and very different suhsamples: a random home interview sample, a sample of

known DRT users, a sample of bus users and a sample of taxi users.

For Rochester, a general home interview survey of the metropolitan area was

conducted in 1975, including a sample of 610 residents making a total of

1759 trips in the DRT service area. However, of these 1750 trips, only

four were reported as made by DRT. In order to estimate any useful model,

it was necessary to perform an on-board survey of DRT users and augment the
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random, home interview survey sample with the additional observations of

DRT users.* The on-board survey provided a total of 401 survey responses

taken on two separate days.

2) level of service data - This data includes wait times, in-vehicle

times and costs by DRT, driving alone and ride sharing for every relevant

origin-destination pair. In Haddonfield, DRT level of service was obtained

by keypunching and processing summary statistics generated by the computer

dispatching system. These summaries provided an estimate of zone-to-zone

DRT travel times and average wait times for service. In addition, the

available summaries made it possible to trace vehicle tours on a stop-by-

stop basis with the times at each stop and between stops known. By assuming

that DRT vehicles move at roughly the same speed as private automobiles,

the data about these tours made it possible to estimate the direct driving

times for most origin-destination pairs.

At the time the data for this study was collected, the Rochester DRT

system was not computer dispatched, and it was therefore impossible to obtain

level-of-service information from existing sources. The data ultimately

used was obtained by conducting a set of measurements of the level-of-service

concurrently with the administration of the on-board survey. As in

Haddonfield, this data was also used to construct vehicle tours and thereby

infer direct origin-destination driving times.

In both data sets, driving time for shared ride trips was estimated by

imposing an in-vehicle and out-of-vehicle time penalty on direct driving times.

:

&

This type of sampling procedure is termed choice-based . The statistical
theory required to use such samples is developed in Lerman and Manski (1976)

and Manski and Lerman (1977).



A- 13

The values of these penalties for work trips were two and four minutes

for in-vehicle and out-of-vehicle time respectively. These were based on

surveys of persons who share rides to work described by Attanuci (1974). The

same values were used for non-work trips.

In both study areas, driving cost data was estimated by assuming an

operating cost model which gave an average cost of 3.8 cents per mile and using

direct driving distances derived from centroid coordinates. Parking costs

are negligible in both service areas

.

DRT fares for the average traveller were derived from reports by the

service operators (Note that because of various discounts for multiple

passenger groups sharing an origin and destination, it is not possible to

simply use the nominal fare). The resulting values were $0 *30

and $0.90 for Haddonfield and Rochester respectively.

The detailed zone systems used to originally code home interview

surveys in both Haddonfield and Rochester had to be collapsed to a smaller

number of zones. This was done primarily to reduce the number of cells in

the travel- and wait-time matrices for which no observations were available.

In addition, the reduction in the number of zones made the development of

the zonal data described below much easier.

3) zonal data - The non-work models require measures of zonal attraction,

including population and employment. These were developed from existing

sources, all of which were originally derived from the U.S. Census data. In

the case of Rochester, a special tabulation of zonal information at the traffic
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analysis zone level was provided by the New York State Department of Trans-

portation. For the Haddonfield area, the population and employment data

were used at the original census tract level.
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A. 5 The Work Trip Demand Model

As discussed in Section 2 of the main report, the work trip models are

multinomial logit mode choice models. A maximum of three alternatives is

available to any one traveller: driving alone, sharing a ride, and either

taking DRT directly to work or using DRT access to line haul transit.*

Table A. 2 presents the best of the three Haddonfield models. The

other two were estimated using a slightly smaller sample, but yielded

roughly similar results except the coefficient of out-of-pocket cost was

insignificant and positive rather than insignificant and negative. The

specification of level of service using cost, total time, and the ratio of

out-of-vehicle time to work trip distance is adapted from one by Koppelman

(1975) and is based on the theory that the value of out-of-vehicle time,

while always greater than the value of in-vehicle time, tends to approach the

latter as trips get very long.

£
Note that because the destination of trips to external zones was not coded
in the Haddonfield survey data this access to line haul transit option .was

not included in the work trip models for Haddonfield. All work trips used
to estimate the Haddonfield models of necessity had both their origin and

destination within the PRT service area.
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Table A.

2

Haddonfield Work Trip Model

Variable Estimate "t" statistic

CONST
DA

.934 .36

CONST
SR

-.140 1 o ON

OPTC -.0133 -.18

aa16
da

1.27 .70

aa16
sr

1.47 .84

age1
drt

+age2
drt 1.27 .60

IVTT+OVTT -.0791 -.77

OVTTtDIST -.00811 -.15

No. of observations = 130

No. of cases = 250

L* (0) = -144.3

L*(6) = - 82.41
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The estimated "t
!'-statisties were uniformly very low in all the

Haddonfield work trip models. This is probably due to the low amount of

variability in the data sample, since only intra-service area work trips

could be used. Such trips were typically quite short. Compounding this

problem, workers in Haddonfield making these trips probably have little

heterogeneity in their socioeconomic characteristics.

As a result of these problems, attempts at estimating a useful set

of work trip models in Haddonfield were abandoned in favor of developing

the Rochester data. The first series of work-trip models estimated on

Rochester data were of the functional form in Table A. 2. Various specifi-

cations of the level of service variables were tested, each producing at

least one counter-intuitive sign. All these work-trip model specifications

were restricted to only three socioeconomic variables: auto ownership;

household size over 16 years old; and the age of the traveller were used. This

was done to minimize the amount of input data required to forecast with

the overall model system.

A further series of specifications were estimated to test the effect

of introducing wait- and travel-time reliability measures. Included in these

runs were variance of wait time, the standard error of wait time, the ratio

of the standard error of wait time to the actual time, and two comparable

series which used the same measures except for ride time and total time re-

spectively. All these efforts failed to produce a credible model, with

wrong signs, and/or low t-statistics , occurring in a number of variables.

The plausible reasons for this apparent lack of sensitivity to trip

time reliability (assuming, of course, that reliability is indeed important)

include the following:
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1) lack of true variation in DRT wait time - As later simulation exper-

iments confirmed, DRT wait-time reliability tends to vary most across DRT

systems rather than within a single system. While our observations of the

variance of DRT wait time showed some variability, this may well have been

due to inherent randomness in wait time over the sample period rather than

systematic changes in average-time reliability. If this is the case, then

over any long period, wait- time reliability is uniform over the DRT service

area, and as a consequence, acts as a constant and presumably negative effect

on the utility of the DRT mode. As such, it would be impossible to distinguish

between the alternative-specific constants and DRT wait-time reliability.

2) multicollinearity between ride-time variance and average ride

time - Unlike wait-time variance, there is significant variation in the

variance of ride time over the DRT service area. For both the DRT and auto

modes, longer trips tend to have higher variances than do shorter trips.

However, the ratio of the standard error of ride time to the average ride

time is, like wait time for DRT, fairly constant.

Thus, when measures such as the variance or standard error of ride time

were introduced into the model, their high collinearity with in-vehicle

time resulted in either one or both of the measures being statistically

insignificant; frequently, one of the two variables' coefficients had a counter-

intuitive sign. When the ride- time reliability variables were normalized

by ride time, the lack of significant variability in the measure resulted

in a statistically insignificant coefficient.

3) measurement problems - Obtaining accurate estimates of time variance

requires extensive observations on actual trip times. The only way such

repetitions could be obtained for even a few specific origin-destination pairs

was to use all trips that began and ended in the correct zones.
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This procedure tends to overstate time variance, since two trips with

the same zones of origin and destination will in general have some differ-

ence in ride time even if the DRT system were perfectly reliable because

the two trips may simply be of different length.

The extent of this upward bias in the estimated variance of ride time

is difficult to determine, since it depends on the geometry of the zone as

well as the distribution of origins and destinations for each zonal pair.

However, it is likely that the use of zonal data, even for relatively small

zones, tended to make the estimation of useful time-reliability

coefficients more difficult.

The discouraging results of the work-trip models with limited socioeconomic

effects and/or with reliability effects led to the conclusion that the develop-

ment of such models for work trips was not feasible given the available resour-

ces. The strategy ultimately adopted was to introduce both a richer description

of socioeconomic characteristics and to eliminate reliability from the model.

Table A. 3 presents the best model obtained from these efforts. These

results, while far from ideal, were the best of more than twenty five

specifications. The alternative specific variable INCOME - 800 * HHSIZE

represents an estimate of the discretionary income of the household; this

variable has been used in a number of previous studies of work mode choice,

yet appears to be relatively insignificant here. Other, more important

variables from the perspective of designing a DRT also have weak significance,

and in the case of out-of-pocket travel cost, have the wrong sign.

In summary, the basic shortcomings of this model are: (1) the counter-

intuitive though statistically insignificant, sign of the out-of-pocket cost;

(2) the inclusion of a large number of socioeconomic variables which would
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increase the input requirements of the model system; (3) the low level of

statistical significance of many coefficients.

Rather than continue what appeared to be a fruitless effort which would

exhaust all the study resources remaining for non-work model estimation,

software development and model validation on this single subtask, it was

decided to adjust the results in Table A. 3 into a useable model by performing

the following transformations:

(1) eliminating the extra socioeconomic variable s -In order to reduce

the needed data inputs required to actually execute the model, income, sex

and household size were removed from the model by evaluating the utility functions

at the average values of these variables and adding the sum into the constant.

(2) constraining the out-of-pocket cost coefficient - The out-of-pocket

cost coefficient in Table A. 3 has an insignificant coefficient with a counter-

intuitive sign. This was modified by using the results of a number of

previous estimation efforts. Empirical evidence , such as that described by

Ben-Akiva and Atherton (1976) ,
for the high degree of transferability of

disaggregate choice models provides some support for this procedure.

Table A. 4 describes the adjusted work trip mode choice model which

was included in the final model system. The two travel time coefficients

appear to be consistent with a great deal of existing empirical evidence (e.g.,

models estimated on other cities such as New Bedford, Mass.; Washington, D.C.;

Milwaukee, Wisconsin; and Los Angeles, California). For both in-vehicle and

out-of-vehicle time, the adjusted coefficients are at the high (in absolute

magnitude) end of the range of prior values, though not at the extreme.

This provides some additional confidence in their values, even though the

t -statistic for the in-vehicle time coefficient is quite low.
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Table A.

3

Rochester Work Model as Estimated

Variable Coefficient "t"-statistic

const
da

-1.483 -.41

const
sr

.1557 .04

const
direct

2.085 .55

mlic
da

6.642 2.17

aalic
Sr

4.4608 1.52

sex
da

3.352 1.81

sex
sr

2.413 1.31

(INC0ME-800*HHSIZE)
L/A

-.1162 -.78

(INCOME-800*HHSIZE) CDSR
-.006 -.05

(1/DIST)
direct

.753 .17

dist
sr

-.2716 -1.01

IVTT* INCOME -.0029 -.32

OVTT* INCOME/DIST -.013 -2.19

OPTC .011 .16

Number of Observations = 236

Number of Cases = 408

L*(0) = -118.9

L*(B) -75.2
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Table A.

4

Final Rochester Work Model After Adjustments

Variable Coefficient "t"-statistic

CONST
DA

CONST
SR

CONST
DIRECT

AALIC
DA

AALIC
SR

SEX.
DA

sex
sr

(1/DIST)

DIST

DIRECT

SR

IVTT

OVTT/DIST

OPTC

-3.51

.0507

2.085

6.642

4.608

3.352

2.413

.7529

-.2716

-.0508

-.2275

-.010

NA

NA

NA

2.17

1.52

1.81

1.31

.17

-1.01

NA

NA

NA

Note: NA implies that
adjustments

.

t -statistic is not valid here due to model
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A. 6 Structure of the Non-Work Trip Demand Model

As discussed in Section 2, the non-work trip demand model involves several

different submodels. Each of the simulated individuals in the model

transitions through a series of probabilistically determined trips and

dwell times over the course of the day. The tracing of this behavior

(for a sufficient number of simulated individuals), provides a forecast of

total non-work trip-making for the DRT service area.

Figure A.l is a schematic state-transition diagram for any one individual.

Each person who does not work is presumed to begin the day at home.

There is a distribution of dwell times at this initial state which de-

scribes how long the person remains there. (Some fraction of all travel-

lers do not leave home on a given day; these persons are accounted for in

the prediction process by adjusting the relative weight of each simulated

individual .

)

Assume for the moment that the distribution of first dwell time at home is

sampled, and the simulated individual will leave home within the operating

period under consideration. Now the relevant question becomes the prediction

of where the traveller will go and how he or she will get there. While all

possible destinations reached by auto, shared ride, DRT direct or DRT as

access to line haul transit are in fact available, these are represented

schematically in Figure A.l by two possibilities.

The actual simulated choice of destination is determined by first

computing the various destination choice probabilities from a joint choice model

of mode and destination, and then sampling randomly from the resulting

distribution. Then, as described in Section 2, the various mode-choice

probabilities conditional on the choice of destination are used to assign
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FIGURE A.1

STATE TRANSITION DIAGRAM
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fractions of trips in the predicted trip tables.

The simulated individual is then "moved" to the selected destination.

The total travel time is determined by a random draw from the conditional

mode choice probabilities. Then, a second dwell-time distribution, the

time away from home at any destination, is sampled. Once again, if the

resulting time is still within the operating period, a destination choice is

determined by using a joint choice model- However, this time a different

model which includes returning home as a relevant destination is used.

The same process of determining fractional modal trips and travel time

is again applied. If the randomly drawn destination is away from home,

the hon-home dwell time distribution is again sampled, and the process

continues as above until the simulated time is beyond the operating period.

If, however, the simulated individual returned home, a third dwell time

distribution is applied. This one describes the time at home given that

the person has left home and returned at least once . After a draw from

this distribution, the process continues as above.

At the end of one operating period, the locations and departure times

for a] 1 individuals become an initial condition for later periods. Thus,

in the sense of a simulation, the model "keeps track" of where the residents

of an area are over the entire day.

This simulation process allows for an explicit, though somewhat simplified,

representation of trip chaining and mode switching. It also includes trips

which go beyond the service area to external zones , and thereby captures the

diversion of trips from outside the DRT area to within it. Such trips

can be made directly by auto, ride sharing or bus, but may also be made by
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DRT access to line haul transit. This generality allows the model user to

predict the contribution of DRT to the line-haul transit system directly.

A full specification of the model requires the following five

elements

:

1) home-origin trip model - predicts the probability of going from home

to some mode/destination combination md out of a set of such combinations MD.

2) non-home-origin trip model - predicts the probability of going from

some non-home destination to mode/destination combination md out of a set of such

combinations, MD (MD in this case includes the special destination of returning home) .

3) first dwell time at home - the distribution of the time of first

departure from home to mode/destination combination md.

4) subsequent dwell times at home - the distribution of the time of

departure from home (other than the first departure) to mode/destination

combination md.

5) non-home dwell time - the distribution of the time of departure from

places other than home to mode/destination combination md.

Each of these elements is either a joint-choice model or a distribution

over time. Both of the choice models will be considered in the subsection

below, and the three dwell- time distributions will be described in a

subsequent subsection.
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A. 7 Non-Work Choice Models

Unlike simple mode choice models, the non-work trip choice models include

both mode and destination decisions. For this reason, the variables in the

models must describe not only travel times and costs but also measures of the

relative attraction of the alternative destinations.

In the final models used, the measures of attraction were restricted to

functions of population, employment and zonal area. These attraction variables

are far from optimal from the perspective of calibrating the best possible

behavioral model; variables such as retail employment, service employment,

recreational services and population by social class, income, or life style

group would be more descriptive of true destination attractiveness. (Some

of these variables were tested in exploratory models estimated with the

Haddonfield data). The restriction to the simpler descriptors was imposed,

however, in order to keep the data requirements of the model system within

reasonable bounds.

In order not to be tied to any one zoning system, models involving

destination choice must be specified to satisfy the property of homogeneity .

Intuitively, homogeneity implies that the forecasts of the model are in-

variant (to the greatest extent logically feasible) with respect to the zone

system used. For example, suppose one were using three zones (A, B and C)

,

and the choice model predicted P(A:ABC), P(B:ABC) and P(C:ABC) as the choice

probabilities for selecting destination zones A, B and C respectively from

the set of available alternatives, ABC*. Suppose further that all the variables

describing zones A and B are of equal observed utility, so that the user of

k
For the purposes of this example, mode choice has been ignored.
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the model wished to combine the zones into a single one, denoted as A + B.

For the model to make behavioral sense, the sum of the probabilities for zones

A and B separately (i.e., P(A:ABC) + P(B:ABC)) should equal the choice

probability for the combined zone (i.e., P(A +B:ABC)). In other words, the

probability that a person goes to either A or B should not depend on

whether zones A and B are treated separately or combined into one zone. This

is what is meant by homogeneity*.

It can be shown that in order to maintain this homogeneity condition in the

multinomial logit model, all variables which measure zonal attraction and depend on

the size of the zone (so-called "size" variables) should appear in the utility func-

tion as natural logarithms, with a coefficient contrained to one. For example, the

size variable used in this study is zonal area, so the utility for any zone should be

V = Z ' 6 + In (AREA)

,

in order to satisfy the homogeneity condition. Note that variables such as

population density are not size variables, since their values are not

functions of zonal size but of zonal composition; combining two zones of

equal population density will not result in an aggregate zone with different

density. On the other hand, a variable such as population is size-related.

In both the final home-based and non-home-based models, the condition

of homogeneity was imposed by constraining the size-related coefficient to

unity. However, the corresponding unconstrained models were also estimated,

and the resulting coefficients are also reported.

Table A. 5 describes four of the early models which were developed

for exploratory analysis on the Haddonfield data base. (Because the

•k

A more theoretical treatment of this property in terms of the utility of

groups of alternatives is presented in Lerman (1975).
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Haddonfield data lacked external trips it was deemed inappropriate for use in

the final models.) Note that size variables such as the total population and

the number of retail employees were not used in logarithmic form and their

coefficients were unconstrained. This is primarily because the goal of these

estimations was not to achieve a final model but to assess the general

feasibility of the general model structure.

The variable CONST,,^,^ in Table A. 5 denotes a variable which has a
HOME

value of one in the utility of returning home by any mode and is zero other-

wise. All other variables are as defined in Table A.l.

These models used a wide range of attraction variables, including

retail and wholesale employment (RWEMP), the number of retail and wholesale

establishments (RWEST) and some transformations of these variables. The

results of these experiments were used to guide the final specification

of the models estimated on the Rochester data.

The general empirical results were deemed encouraging, particularly for

the home-origin trip model. The critical level- of-service parameters consistently

had the expected sign and, except for out-of-vehicle time, were statistically

significant. The employment-related attraction measures (retail/wholesale em-

ployment and number of retail establishments) were both significant. Population

and DRT-specific age variables appear to be insignificant.

In the most interesting Haddonfield non-home origin trip model, in-

vehicle and out-of-vehicle time were combined into a total time variable.

This was motivated by the high standard error in the out-of-vehicle time

coefficient in the home-based trip models . In this model, the return home

constant (CONST„„w„) is by far the most significant. Out-of-pocket cost has a
HOME

very small, insignificant coefficient, indicating that the individuals who

have already left home and are travelling may well be very cost insensitive.
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Table A. 6 presents the final models estimated from the Rochester data in

both constrained and unconstrained forms. A number of changes were made in

developing these models based on the Haddonfield results.

(1) In-vehicle and out-of-vehicle travel time were combined into a

single variable. This implies that they are evaluated by travellers as having

equal disutility; while such an assumption may be untenable for work trips

or for conventional transit, it is quite plausible for non-work DRT trips

in which wait time is incurred at home or in a store rather than an outdoor

bus stop.

(2) Out-of-pocket cost is entered into the model in logarithmic form.

Earlier models without this transformation were overly cost sensitive and

severely under predicted for high fare DRT systems such as Davenport, Iowa.

This transformation is necessary because unlike conventional transit, DRT

is typically more expensive than the auto mode and the range of possible fares

is much greater than usually encountered in modal choice models. (It may

well be that such a transformation would be necessary in mode choice for

conventional transit if one were interested in a wider range of fares; given

the current low variability in transit fares, whether one uses a linear or

logarithmic form is probably of little practical importance.)

(3) The constraining of the coefficient for the logarithm of zonal area to unity

makes little difference in the home origin model, but significantly affects

the non-home origin estimates.* This was true for all variants of the model

specification tested, and may pose some potential problems. The constrained

version was selected for the final model despite this difficulty in order to

preserve homogeneity in forecasting with the model.

*The Cambridge Systematics Logit Estimation Program has the capability to
perform this particular type of constrained estimation.
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Table A.

6

Final Non-Work Models : Rochester Data *

Home-Origin
Non-Home Origin

VARIABLE Unconstrained Constrained Unconstrained Constrained

const
da

-6.992 -3.44 -7.223 -3.47 -1.687 -.35 -3.035 .62

const
sr

-7.134 -3.63 -7.338 -3.62 -1.806 -.38 -2.991 -.61

^DA 7.381 1.73 7.450 1.64 8.440 .82 8.608 .80

m16
sr

7.507 1.78 7.577 1.68 8.010 .78 8.178 .76

IVTT + OVTT -.133 -3.65 -.141 -3.93 -.0223 -.77 -.0573 -2.01

ln(OPTC) -1.462 -6.21 -1.484 -6.33 -.883 -4.76 -.934 -4.85

-.824x -. 768x - . 606x -. 250x
POP/AREA

io
-4 -2.82 10-4 -2.62

io"
4 -2.33

io
-5 -.09

TOTEMP/AREA
. 218x

io
-4 2.39

.236x

io
-4

2.58
-. 137x

io
-5

.15
. 118x

io
-4

1.21

CONST,,-..-
HOME

— — — — 1.979 9.76 2.663 13.49

In (AREA) .901 6.28 1.000 * .234 1.85 1.000 *

Number of

observations 211 211 277 277

Number of 5145 5145 7497 7497

cases

L*(0) -495.2 -495.2 -867.4 -867.4

L*(B) -344.2 -344.2 -558.4 -577.8

Percent Right 23.2 23.2 32.9 31.4

*Each Unconstrained and Constrainted model is summarized for each variable

by the value of the variable coefficient and its "t" statistic.
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(4) The statistical significance of one of the two density measures

(POP/AREA and TOTEMP/AREA) in the non-home origin model is very low,

though the insignificant coefficient depends on whether or not the model

is constrained. Both variables were kept in the models to maintain some

logical consistency between them.

(5) The coefficient of population density (POP/AREA) is negative in

both models, perhaps reflecting the possibility that such zones are highly

residential in character and are therefore even less attractive as des-

tinations than their employment density would otherwise indicate.
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A, 8 Distribution of Departure and Dwell Times

The final set of distributions for first departure time from home, time

between subsequent returns and departures, and non-home dwell times are

described in the model by eight distinct distributions. All distributions were

derived from an analysis of the Rochester data. Initially, each distribution

was tabulated for every group in a cross-classification based on auto ownership

(0, 1, 2+) and age of resident (less than 65 years, greater than 65 years).

The resulting 18 distributions (3 distribution types x 3 auto ownership

levels x 2 age groups) was aggregated into the final eight by use of a series

of simple t-tests to determine whether or not the hypothesis of equivalent

distribution means for various socioeconomic groups can be rejected.

The use of only eight distinct distributions implies some fairly strong

assumptions about the trip frequency of various socioeconomic groups. Simply

because the means of two distributions are not significantly different at

some level of confidence does not necessarily imply the two are identical.

However, since some of the samples were extremely small, some pooling of socio-

economic groups was essential. In other cases, the means of the distributions

were fairly close, so that pooling them did not change the forecasting results

significantly anyway.

Two types of probability distributions were then fitted to the actual data

to simplify the sampling process . The first, used to represent the time of first

departure from home, is a shifted and truncated gamma distribution, which is

defined as follows:

° if t„ < t
F — crxt

f(t
F

)
= max

f
Y

(t
F

t
crit

)/ f
f (t - t ) if t .

- t„ - t
y F crit crxt F max

crit
0 otherwise

'This distribution is defined as the time of first departure from home in

minutes after midnight given that a trip is made .
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tp = time of first departure from home (in minutes) given that a trip is made

= the time of the first possible trip during the day (in minutes)

t ~ enc* t^ie triP~making period of the day

fy(tp) = the gamma distribution, i.e.,

f
Y
(t

p
) = p(pt)

a 1
e
~pt

r°° -u a-1 ,

J e u du
0

The other two distributions, the second dwell time at home and the non-

home dwell time, are described as modified exponentials. Thus,

f(t)

-At

if

J
t
max Ae ^dt

0 < t < t— — max

.

(
0

' 0 otherwise

Table A. 7 presents a summary of the final distributions, listing the

variable described, the socioeconomic group to which it applies, the type of

distribution (gamma or exponential), the mean of the sample, t . (ifcnt

applicable), t , and the parameters of the distribution,
max

A second set of data to execute the non-work trip model is the fraction

of residents who do not leave home in a given day. This fraction is used to

determine the number of people who do not travel at all for non-work purposes

Table A. 8 presents these fractions for the various socioeconomic groups.

These groups do not correspond one-to-one with those used for the final

distributions, since the propensity to travel may differ even though some of

the distributions for those who travel are identical.
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The fraction of the population who do not travel for non-work purposes is

slightly greater for the elderly than the non-elderly. This difference, while

small, may reflect the low labor force participation rate of the elderly

population. (While roughly 31% of the non-elderly population in the sample

made a work trip, only 7.6% of the elderly population did). Thus, it appears

that, at least in the Rochester sample, though the elderly make very few work

trips they travel fairly often for non-work purposes.

Note that while all the above distributions are built into the software,

each can be changed by the user if so desired. Thus, these values are de-

faults for the user rather than inflexible model parameters.



Table A.

8

Fraction Not Departing From Home During Day: Rochester Data

Group
Fraction Not Departing
From Home During Day Sample Size

>65 Years
0 autos . 72 202

>65 Years
more than 0 autos .48 439

<65 Years,
0 autos .78 827

<65 Years,
1 auto .62 2418

<65 Years
2+ autos . 53 3693

A— 3 8



APPENDIX B

SUPPLY MODEL: TECHNICAL DOCUMENTATION

B.l Initial Attempts at Model Development

Before describing the final supply model and its development, several

preliminary, unsuccessful attempts at developing a DRT supply model will be

briefly described. As indicated by the Study Design developed at the outset

of the project, it was not originally intended to develop a descriptive sup-

ply model.* Although it was recognized that a descriptive model, if constructed

carefully, could serve as a powerful tool, the limitations of a model not

based on an underlying theory were considered to be more important factors.

As such, it was decided to attempt to develop a causal, analytic supply

model which would be consistent with the development of the behavioral demand

model. It was understood, and stated in the study design, that the budget

available for supply model development might not be sufficient to allow the

development of an analytic model. Thus, the development of a descriptive

model was considered from the outset as the potential backup approach.

B.2 Queuing Theory

Some previous attempts to develop an analytic DRT supply model for many-

to-many service (e.g., Lerman and Wilson, 1974) were based on queuing theory.

Many-to-many DRT service clearly involves a queuing process, albeit a rather

complex one. The initial approach undertaken in this project was to extend

some models based on queuing theory developed by Yamamoto at M.I.T.- The

models appeared to produce reasonable results although they had not been fully

tested. These preliminary successes offered the hope that an analytic model

could be developed within the initial budget.

*The term descriptive is used here to describe a model developed principally by
empirical observation rather than theoretical considerations.

B-l
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Yamamoto developed separate models for predicting the mean wait time and

ride time in a DRT system. Wait time was defined as the mean time between the

service request and the arrival of a bus, and ride time as the time from board-

ing the bus to arrival at the destination. In the wait time model, the DRT

system was treated as a multi-server queuing system with N (number of vehicle)

servers in parallel. A service in random order (SIRO) queue discipline was

assumed. The queue was considered to be composed of persons waiting to be

picked up and persons already on board waiting to be dropped off. The start

of service was defined as the time a vehicle began to provide dedicated ser-

vice to a passenger, i.e., started heading directly towards his or her origin

or destination.

Passenger wait time is broken into two components: 1) the time until a

vehicle begins heading towards the pickup location, i.e., the time spent wait-

ing in a queue; and 2) the time it takes the vehicle to travel to the pickup

location, i.e., the service time.

Let us deal with this latter component first. The service time is essen-

tially the time it takes a vehicle to travel from one stop to the next; the

average service time is the "mean interstop travel time." The estimation of

interstop travel time has been important in all efforts at using queuing theory

to model dial-a-ride systems. Lerman and Wilson (1974 and 1975) resorted to

a regression equation for estimating interstop distance. Yamamoto used pro-

bability theory to estimate average interstop distance; however, his approach

was considered to be unsuitable, and this was one of the areas of his model

for which improvements were planned under this project. At the outset the

Lerman-Wilson formulation of interstop travel time was employed as an element

of the Yamamoto wait -time model.
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Using multiserver queuing theory, the first component of passenger wait

time can be obtained as the wait time in the queue. Thus, given a method for

estimating the mean interstop travel time, mean passenger wait time can be

estimated. The results of this modelling approach, however, did not prove

satisfactory, for the following reasons:

1) This representation assumes that a passenger could be assigned to

the first free vehicle. Typically a passenger would only be assigned
to one of a subset of vehicles, those heading in the appropriate dir-
ection. Thus, the model should consistently underestimate wait time.

2) The model treats passengers on board vehicles as if they were in the

same queue as persons waiting for a vehicle. Since persons on board
a vehicle can only be served by the vehicle they are on, they really
should not be considered in the same queue as those waiting for any
vehicle

.

3) Service in random order may not be the appropriate queue discipline.
Clearly passengers who have been waiting longer or travelling on
board the vehicle for a while will have some priority over new pas-
sengers .

Attention was next focused on the Yamamoto ride time model, a Markov re-

liability model, in which a passenger's trip was represented by a series

of system states. These states correspond to the number of passengers other

than the "passenger of interest" on board the vehicle, and whether or not the

vehicle was in motion. The arrival of a passenger at his or her destination was

defined as the "absorption state," analogous to the failure state in a standard

reliability model. The passenger's ride time could then be estimated as the

mean time to failure. State transition probabilities were based on assump-

tions of Poisson arrivals with mean A, exponential interstop travel time with

mean 1/y^ ( ecl
ual to the mean interstop travel time) , and exponential "deviation"

time distribution with mean lj\i
^ ,

with deviation time defined as the time it

takes to pickup or drop off a passenger not on the direct route of the passen-

ger of interest.
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A full description of this model can be found in a paper by Yamamoto

(1975). The model did not produce satisfactory results for the following

reasons

:

1) A more realistic representation of system states would consider the
number of persons waiting for service as well as the number of per-
sons on board.

2) The assumption of exponential interstop travel time (as well as ex-
ponential deviation time) is not realistic . Interstop time could
probably be better represented by a gamma distribution.

3) There was no satisfactory method developed for estimating mean devi-
ation distance.

4) This representation still assumes service in random order.

Given the apparent difficulties with the Yamamoto formulation, it was de-

cided to seek alternative approaches towards developing the supply model.

B. 3 A "Pseudo" Semi-Markov Model

The problems encountered in attempting to extend the Yamamoto ride-time

model led to the next approach at developing a supply model. This model was

termed a "pseudo" semi-Markov model because of its resemblance to a semi-

Markov model (in the use of system states and state transition probabilities).

In this model a single vehicle is again considered. System states are

determined by the number of persons on board the vehicle and the number of

persons assigned to the vehicle and waiting to be picked up. Specifically,

state x,y is attained when there are:

x people assigned to the vehicle, waiting to be picked up, and

y people on board the vehicle waiting to be dropped off.

A SIRO (service in random order) queue discipline was assumed as an ini-

tial approximation. State changes occur when a vehicle arrives at a stop and

picks up or drops off passengers. The average time it takes to change states

is the mean interstop travel time plus the mean load/unload time.
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Consider that a passenger arrives in the system at state x,y (i.e., the

"passenger of interest" is the xth person assigned to the vehicle)
,
and we

are trying to predict his or her expected wait time. If the vehicles next stop

is a pickup, there will be y + 1 passengers on board at the next state. The

number of passengers waiting for service will be x-1 only if no passengers

were assigned to the vehicle during the state transition time period . However

,

there is a probability associated with one or more passengers being assigned

to the vehicle during that time period. Likewise, when a passenger is dropped

off there will be one less person on board the vehicle, but there may be more

persons waiting. Recalling the SIRO queue discipline, the probability of a

drop off being the next stop is given by
^

^
,
while the probability of a

pickup is given by
x

x + y

picked up is given by
x + y

following probabilities hold:

. The probability of the passenger of interest being

(because of the SIRO assumption). In general, the

1) p (x,y + x+n-l,y+l) = p (n)
x-1
x + y

2) p (x,y -* x+n
,
y- 1 ) = p(n)

3) p(x,y passenger of interest pickup) =
x + y

Where the first term is the probability of going from state x,y to a pick-

up of someone other than the passenger of interest, with n other passengers as-

signed to the vehicle in that time period; the second term is the probability

of going from state x,y to a drop off with n other passengers being assigned,

and the third term is the probability that the passenger of interest is picked

up. Define p(n) as the probability of n arrivals in the state transition time

period T^ , assumed constant.*

*Assuming calls for service arrive according to a Poisson distribution with
mean A (per vehicle) p(ri) is given by (AT

}

n exp (-AT.).

nO !
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To help visualize the process, consider the following portion of a

state transition diagram.

(ie.
,
passenger is picked up)
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The estimation of expected wait time was based on the calculation of the

probabilities associated with k interim stops between the time a passenger is

assigned to a vehicle and the time he or she is picked up.

The results of this modelling effort also proved to be unsatisfactory.

The problems with the model that have been identified include the following:

1) Similar logic could be used for estimating expected wait and ride

times; thus, there was no reason for the model not to predict iden-

tical values for wait and ride time. This was based on a number of

factors, including the lack of consideration of trip length.

2) Because ride time prediction was based on the number of interim
stops and the interstop travel time and not on actual trip length,
it was possible for the model to predict a ride time that was
shorter than the direct ride time.

3) The assumption of a constant state transition time introduces dif-
ficulties. Clearly the state transition time (mean interstop time)

is a function of the number of persons on the system.

4) The SIRO assumption still may not be an accurate representation of

the system.

The basic approach outlined above was still considered to be promising,

and work began on modifying the approach in order to remedy the problems.

Among the changes being considered were:

1) Modification of the model to a continuous time semi-Markov process
representation using network flows in place of transition probabil-
ities .

2) Development of a state dependent interstop travel time estimate.

3) Adjusting the state transition probabilities to account for the number
of interim stops, thus modifying the SIRO assumption.

4) Make the transition to the absorption state in the ride time model de-
pendent upon distance travelled.

However, before significant progress could be made on any of these con-

cepts, it was determined that the budget could not support further work and still

retain sufficient funds to allow the development of a descriptive model in



B-8

case further efforts did not produce results. Thus, attention was turned to

the development of a descriptive model, described in the following section.

B.4 The Descriptive Supply Model Methodology

The approach taken in formulating the descriptive model was to first de-

velop the bounds for wait and ride time and then formulate models that were

(1) bounded correctly, and (2) demonstrated the observed empirical relation-

ships between the input parameters and the travel time.* Calibration of the

models was based on a series of simulation experiments. The simulation model

used was the M.I.T. model which had previously been validated with data from

the Haddonfield, New Jersey, DRT system and has since been validated with

data from the Rochester, New York, system. A primary objective of the supply

model development was accuracy within + 10% of mean system performance as

measured by the simulation model, since fluctuation between systems caused

by factors not modelled would be at least at this level.

*The basic input parameters considered at the outset of the model development
are discussed in Chapters 2 and 3 of the main report, and listed below:

1) Productivity (A)
demand rate (trips per hour)

vehicle fleet size

2) Vehicle fleet size (N)

3) Service area size (A)

4) Street network adjustment factor (fa)

5) Vehicle speed (V)

6) Load, unload times (l,c)

7) Trip length (L)

V is defined as
( 6 °

- ~ y i+u)V
ef f 60

The remaining input parameters were considered at a later point in the
model development, and will be discussed later in this section.
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The projected sequence of model development steps was to first develop

models for estimating system-wide wait and ride time averages, then to develop

models for estimating the wait and ride time of individual trips, and finally

to develop models of wait- and ride-time reliability. By the time the last

step was reached, wait- and ride-time reliability had been eliminated from the

demand model specifications (see Appendix A) and so this supply model was

not developed.

Two factors that could influence the performance of a DRT system were not

considered implicitly within the model formulation. The first factor is vehicle

capacity. Experience and research have both indicated that level of service is

sensitive to vehicle capacity only over a small range of vehicle sizes. The

reason for this is that for vehicles with capacities of perhaps seven or more,

the desired service quality more actively constrains the number of passengers

that can be picked up than does physical capacity. Because of this character-

istic of DRT systems, it was decided that the most effective approach would be

to develop separate models for the DRT operating scenarios most closely related

to vehicle capacity. The basic model would represent traditional DRT service

which uses vans or small buses that seat 10 passengers or more. A second model

would be developed to represent a shared-ride taxi system with a vehicle capa-

city of four or five.

The second major factor that could influence level of service is the tvpe

of dispatching system used. Two factors prevented incorporating dispatching

within the initial model formulation. The first was the inherent difficulty

of attempting to parameterize the many possible dispatching schemes, while the

second was the fact that the simulation model could provide a consistent pre-

dictor of computerized dispatching only. It was decided that the impact of dis-

patching systems would not be considered in the model formulation, but
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the model would be later adjusted to account for dispatching options.

The steps in the overall model development are described in the following

section

.

B.5 Formulation of Model Bounds

System bounds for DRT systems are developed below.

1)

As vehicle productivity approaches zero, i.e., when there are very
few passengers in the system, wait and ride time approach their
minimum values. The minimum ride time is simply the direct ride
time, or:

f L— a

where RT = mean system ride time

f = ratio of street distance to airline distance
a

L = mean trip length (airline distance)
V = vehicle speed

Note that for very low demand levels, V is equivalent to V The
(minimum) wait time is the time it takes for the closest
vehicle to reach the passenger. Assuming that the vehicles are ran-
domly distributed throughout the area, the expected distance that
the vehicle will travel is the expected distance between a (random)
point and the closest of N randomly distributed points in an area of

size A. It can be shown that this value is given by:

2 v N

so that the minimum wait time is:

2) As demands per vehicle become very large, both wait and ride time

approach infinity. In the real world, of course, there is a satur-
ation point, beyond which no additional passengers can be carried
(per hour), although they may be waiting for service. In practice,
high wait times result in cancellation of service requests. This
serves as a regulator, eliminating infinite service queues.

3) As the area becomes very large, wait time and ride time approach
infinity

.

*The derivation of this expression can he found in a number of texts, includ

ing Kendall and Moran (1963).
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1

B. 6 Model Form

Observations of actual DRT systems, and simulation experiments, suggested

that wait and ride time are related to productivity, vehicle fleet size, and

area in the following manner:

From the diagram, it appears that these relationships could well be repre-

sented by exponential functions which is not surprising given the complex

queuing process representation of DRT service. The use of an exponential form

lends itself to the development of properly bounded models. Furthermore,

while the models would not be causal, the use of proper bounds and a model

form that reflects the underlying queuing process would seem to offer a

fairly powerful base for the model.

A number of different formulations were tested (by hand) prior to actual

calibration. The functional forms that seem to best fit the data were:

A 1/N A

WT exp (k
1

x / A + k 52V
eff /

J N + k
6
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f
a

X L
A x A

k
4

RT = ———— exp (k (——— ) )
V
ef f

'3' N

A series of 31 simulation runs were used to provide data for calibration.*

Calibration was performed with log-linear regression; however, because of the

limitation of readily available software, the regressions were designed to es-

timate k^ and k^ only: constants k^ and k^ were preset, and the regression re-

sults for different runs using different values of k„ , k. , k_ and k. were com-
2 4 0 6

pared to select the best function.

Final estimated values for the six parameters were as follows:

k = .219

k
2

= .9

k
3

= .0843

k
4

= - 7

k
5

= 4

k r = 12
6

'Calibration was over the following range of inputs:

2 2
A (area) = 4 mi. - 20 mi.

N (vehicle fleet size) =4-34
f (street network adiustment factor) = 1.2 - 1.4
a

V (vehicle speed) = .2 - . 3 miles/minute

l,u (load, unload time) = .375 - 1.25 min.

A (productivity) = 4 - 12.7 passenger trips/vehicle flow

Demands per square mile per min. = 2 - 4.5
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B.7 Model Results

Table B.l compares the predictions of the descriptive model with the

results of the simulation model for the 35 runs. Some statistics on these

results are shown in Table B. 2.

In interpreting these results, consider that the RMS error is a measure

of the mean difference between the descriptive model and simulation results;

RMS error differs from standard error in that it does not correct for degrees

of freedom. Both the t-test and the chi-square test could not reject the

hypothesis that the two distributions (simulation and descriptive model re-

sults) were the same.

B.8 Shared-Ride Taxi Version of the Model

In a shared-ride taxi system, where vehicle capacity is typically four

or five, level of service would be expected to be different than it would

be in a system where larger vehicles are used. Since vehicles reach capacity

more quickly, some passengers will have to wait longer for a vehicle. On

the other hand, since the maximum number of passengers on board

the vehicle is lower, one would expect the mean system ride time to be lower.

Both of these impacts would be expected to be more severe at higher demand

levels

.

Because shared-ride taxi service is identical to DRT service

with the exception of vehicle capacity, it was hypothesized that the same

model formulation could be used, with the model recalibrated against simula-

tion experiments that considered a vehicle capacity of 5. Following this

procedure with a series of 10 simulation experiments
, the wait time model

was recalibrated with and k^ re-estimated as:
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Table B-l

Comparison of Descriptive Model with Simulation Results

Inputs
Vehicle Simulated Estimated Simulated Estimated

Area Fleet Size Productivity WT WT RT RT

9. 8 6.0 7.65 7 . 79 13.54 13.01
9. 8 6.0 8.27 7.27 10 .99 12 . 14
9. 8 12.0 13.85 15.65 15.82 14 .80
9 . 10 12.0 13.47 12.96 14.58 14 . 17

12. 8 10.0 13.55 15.93 16.70 15.88
12. 14 6.0 6.94 5.93 12.68 12.74
12. 10 8.0 9.08 9 .84 13.39 13.96
16. 10 8.0 12.95 13.11 17.35 16 . 74
20. 14 6.0 8.01 8 .92 17.27 16 .68
20. 14 8.0 12 .44 12.52 19.01 18 .63
12. 14 6.0 5.94 5.84 12.78 12.56
20. 14 6.0 11.00 10.40 19 .69 19 .38
9 . 8 6.0 6 .25 6.67 10.32 11.15
9. 8 8.0 8 .67 8 .67 11.57 11 .95
4. 6 6.0 4.61 5.14 7.86 7.90
4. 6 4.0 3.20 4 .00 6.64 7.29
4. 4 6.0 5.41 6 . 58 7 .28 8.29
4. 4 4.0 3.72 5.05 6.78 7.44
4. 8 6.0 3.89 4.29 7.86 8 . 09
4. 8 8.0 5.41 5.41 8 . 59 8 . 75
9 . 8 4 .

0

4.90 4.95 10.83 10 .77
9. 8 10.0 11.95 11.83 14.64 13. 38
6

.

6 6 .

0

6 .28 5.84 9.19 9 . 27
6. 4 6.0 7.72 7.58 10.24 10.58

10. 8 8.0 11.81 11.04 15.04 14 . 37
14. 10 6 .

0

11.02 9 . 36 16.39 15.96
18. 10 6.0 10.48 10.45 16.47 18.00
16 . 12 5 .

0

8.46 7.46 15.91 15.25
9. 18 10 .

0

6.46 6.25 12.11 11.23
6. 22 12.7 5.56 5.07 9.61 9.42

18. 16 8.5 11.55 10.94 18 . 58 18.24
12. 34 9.0 4 . 91 4.13 12.47 11.6 3
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Table B.2

Some Statistics on Calibration Results

Wait Time Model Ride Time Model

Predicted Mean/Actual Mean 8.29/8.32 12.84/12.78

Standard Error 1.05 .723

Root Mean Square (RMS) .88 .626

Percentage RMS Error 10.72% 4.88%

T-Statistic/Conf idence Level 3.85/99.5% 3.39/99.5%

X-Square Statistic 2.92 1.51
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k = .20

k
3

= 1.0

Note that, as expected, these results suggest that the wait time difference

between shared-ride taxi and dial-a-ride service would be very small at lower

demand levels (where the lower value of and the higher value of k^ would

counteract each other), but increase with increasing demand. Interestingly,

for the 10 observation, the shared-ride taxi version of the model appeared

to offer a better "fit" with a percentage RMS error of less than 6%.

The results of the ride time model calibration were somewhat surprising.

The best results were obtained with the same constants estimated earlier.

Thus, it appears that vehicle capacity does not significantly impact ride time.

A possible reason for this is based on the fact that the mean number of

passengers on board a vehicle will be well below five for most DRT systems,

except in cases of very high demand levels. Although a vehicle capacity of

five constrains the maximum number of passengers who can be on board at one

time, it will have little impact on the overall average occupancy. Thus,

the mean ride time is not significantly different. This may not hold true

for very high demand levels; however, for the purposes of this project, a

single ride-time formulation was accepted for both DRT and shared-ride

taxi service.

B.9 Individual Ride Time and Wait ’ime Models

The next step in the model development process was to develop models for

predicting wait time and ride time for an individual trip. It was hypothesized

that for a given system, ride time for a particular trip is linearly propor-

tional to trip distance; in other words, the expected ride time of a person
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whose trip distance is four miles would be twice that of the person whose trip

is two miles. Based on this assumption, the model that was developed for pre-

dicting mean system ride time should be able to predict the ride time of an

individual trip. To test this hypothesis, the model was recalibrated against

the simulated individual travel time data for the runs used for the earlier

calibration. The results were comparable to the earlier calibration; the

term was almost identical (.086 instead of .0843) and, although the standard

deviation of error was understandably greater given the greater variance in

travel time for individual trips, the results seemed to support the hypothesis.

Thus, the ride-time model can be used as shown earlier to estimate the ex-

pected ride time of a particular trip.

The initial hypothesis about the expected wait time of a particular trip

was that it would be a function of the popularity of the zone of origin, as

well as the location of that zone. If many trips are made to or from a

particular zone there would seem to be a high probability that a vehicle

will be in the zone, or headed towards it. Therefore, one would expect the

wait time in that zone to be fairly low. Furthermore, one would expect

vehicles to pass through zones near the center of the service area more

frequently than through zones located at the extremities. Thus passengers

waiting at central zones could expect shorter wait time.

On the first pass it was determined that it would be too difficult to

account for zone location, but that the impact of zone popularity could be

considered. The following model form was hypothesized:

WT.
1

0 + D

0, + D.
k i

WT
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where

WT^ = Expected wait time for trips originating in zone i.

0 = Mean number of origins per zone *

5 = Mean number of destinations per zone *

CL = Number of trips originating in zone i

D_^ = Number of trips ending in zone i

WT = Mean system wait time

Comparison of the predictions of this model with simulation results

suggested that this model was not capturing the impact of zone popularity;

the simulation model did not suggest that wait time was inversely proportional

to the number of trips to and from the origin zone.

As a next step, the popularity of the destination zone was incorporated

in the formulation. This was based on the assumption that a passenger going

to an unpopular destination may have to wait longer for a vehicle, i.e., he or

she may have to wait until there is another call for a trip to or from that

zone. (Likewise passengers going to a popular destination may be picked up

fairly quickly). Again the results did not support this hypothesis. Tests

were set up in which up to 35% of all trips were directed to a single zone,

with the results indicating that the mean wait times for trips to and from

that zone were not signif icnatly different from the system mean. Regressions

indicated that zonal wait -time deviations from the mean wait -time were simply

random deviations about the mean, or at least not explainable by any of the

variables being considered. Based on these results, it was decided that the

mean system wait- time model would be at least as good as the other model

variations tested for predicting zonal wait time.

1
Note that 0 = D = total trips

number of zones
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A word of caution in interpreting these results. Although the evidence

suggested that zonal wait-time differences from the mean system wait time

were caused by random variations about the mean, these results are counter-

intuitive. A possible reason for these results is the extremely high variance

of zonal wait time. The runs simulated up to four hours of service.

During that time period there may have only been two to four trips between

particular zone pairs. Further research into this area is necessary before

any final conclusions are drawn.

B.10 The Impact of Different Dispatching Systems

As noted earlier, the simulation model with which the descriptive model

was calibrated simulates a computer dispatching system. It has been widely

assumed that computer dispatching would have a significant impact on service

levels. To date, only a single system, the Haddonfield, New Jersey system,

has successfully experimented with computer dispatching, so that there is

limited data available to support or refute the hypothesis.* In Haddonfield,

the introduction of computer dispatching resulted in a 20% decrease in mean

wait time, improvement in wait- and ride-time reliability, and no change in

ride time. Although these results are clearly not conclusive, they provide

the only basis for determining how the descriptive model can be used for

forecasting the level of service of a manually dispatched DRT system.

Before describing the suggested modifications to the model to enable

it to forecast manually dispatched DRT system performance, other dis-

patching system considerations must be introduced. Perhaps the most important

*A computer system has since been implemented in Rochester, New York. As of
this writing the system is operating, but other operational difficulties
have made it difficult to truly compare system performance under computer
and manual dispatching.
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consideration is the way in which the dispatching system makes assignment

decisions. In general, dispatching assignments are based on providing the

best overall service. In the Haddonfield assignment algorithm, the same

algorithm used by the simulation model, an "objective function" is used to

synthesize impacts of a specific assignment. This objective function includes

a measure of passenger dissatisfaction which incorporates wait time and

ride time. In Haddonfield, wait and ride times were assumed to be equally

onerous to passengers, and hence were weighted equally within the objective

function. Simulation experiments have indicated that the equal weighting

of wait and ride time will result in minimum total system travel time (sum

of wait plus ride time), although substantial changes to this weighting

were found to increase total time by less than 10%.

However, an equal weighting of wait and ride time cannot be assumed for

all DRT systems. Indeed, observations of manually dispatched systems such as

the one in Rochester, New York, have suggested that dispatchers have a tendency

to weight ride time more heavily than wait time because they perceive passengers

waiting for service as not yet on the system. Furthermore, drivers have been

known to disregard instructions to pick up passengers before dropping off

others, since their contact is only with passengers already on board the

vehicle

.

As a vivid illustration of the way these dispatching options can impact

wait and ride time, consider the following comparison of the model results

with data obtained from the Rochester DRT system while it was under com-

puter control. At that time the algorithm in Rochester weighted ride time

50% more heavily than wait time, partly in response to problems the system

was having, and partly in response to suggestions from the dispatcher.

The results of this comparison are shown in Table B.3.
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Table B.-3

Comparison of Descriptive Model

k
with Data from Rochester

Kean System
Wait Time

Mean System
Ride Time

Mean Total
Travel Time

Rochester Data 30.5 min.

Model Results 19.4 min.

16.0 min. 46.5 min.

23.6 min. 43.0 min.

*Data is for one evening of service. At the time this test was made the com-
puter system had been successfully used for evening service only. Data repre-
sents a 4.6 hour period during which 62 demands were served. Five instances
of "no shows" were treated as half-demands. Effective vehicle speed, accounting
for street adjustment factors was measured at 11.3 miles per hour. Mean trip
length was L=2.2 miles, and the service area was A=17.5 square miles.
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The model, calibrated with an algorithm that weights wait and ride time

equally, underpredicts wait time by 30% and overpredicts ride time by 47%,

Note, however, that total travel time is underpredicted by only 7.5%; recall

that different weightings of wait and ride time do not significantly impact

the sum of these two measures.

Other dispatching options may also impact level of service. For example,

dispatching strategies that allow trip purpose or passenger prioritization

would be expected to impact wait and ride time differently than a strategy

that treats all trips equally. However, it was decided that at most the model

could be expected to account for two issues: manual vs. computer dispatching,

and wait versus ride time trade-off.

Let us first consider the dispatching issue. There is no way to obtain

additional information on the differences between manual and computer dis-

patching until the Rochester system is fully operational or other computer

systems are implemented. Haddonfield remains the only data and so the only

reasonable approach is to use it to make a very simplistic modification to

the model. It was decided to introduce a user supplied adjustment factor to

the wait time model only. By setting this factor greater than zero, the model

will predict a wait time that is higher than the wait time expected for a com-

puter dispatched system. Based on the Haddonfield results, a range of .1 to .3

is suggested for this factor, with a higher value suggested for higher demand

levels

.

Although the impact of the wait/ride time trade-off could have been analy-

zed through further simulation experiments, it was decided to use a fairly

simplistic approach to account for this factor as well because of the limited

budget remaining for supply model development. Since total travel time is
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relatively insensitive to the weighting of wait- and ride-time,

an obvious approach was to introduce an adjustment factor that changes wait

and ride time by the same amount.

The resulting models for wait and ride time prediction are as follows:

WT = (1 + a + 3) WT
a

RT = RT - —— gWT
3

L

where

WT = Wait time adjusted for dispatching system
cL

RT = Ride time adjusted for dispatching system
3.

a = An indication of whether the system is computer dispatched

3 = A measure of the trade-off between wait and ride time

L = Length of trip

L = Mean trip length

Note that under this formulation the total travel time does not

change
, and ride time remains proportional to trip length. This

relationship may break down for short trips or for high values of 3, since

the model may try to drive ride time below the minimum direct ride time.

The model system software has been designed to test for this, and will

not allow ride time to go below the minimum level. Because of this feature,

the model system (i.e., the equilibrium model) may predict a mean ride time

that is higher than would be predicted if the ride time model was executed

alone with a mean system travel distance. Since the unadjusted model

probably underestimates total travel time for a system that does not utilize

equal wait/ride time weightings, this does not appear to be a problem.
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To illustrate the impact these modifications have, return to the

Rochester example, a would be set to 0, since the system was computer

dispatched. Since ride time was weighted 50% lower than wait time, we

might set 3 = -5. The results are shown in Table B.4.

Clearly, these modifications to the model are still in a preliminary form.

The determination of the impact of different dispatching systems on DRT

performance is an area where additional research is necessary.

B.ll Final Model Adjustments

Two final adjustments to the model were developed. The first is based

on the concept of "effective vehicle fleet size," a concept developed during

the validation of the simulation model. It was discovered that when vehicles

leave and then re-enter service, (for example, for driver reliefs), the system

operates as if it had fewer vehicles in operation than it actually has. Since

passengers waiting for service cannot be assigned to vehicles scheduled to leave

service, the mean system wait time is greater than it would be if there were

a constant vehicle fleet size. As far as system wait time is concerned, the

"effective" vehicle fleet size is smaller than the actual fleet size. Ride

time, however, does not appear to be similarly affected. Although a backlog of

passengers will appear before a vehicle re-enters service, resulting in a longer

than average ride for these passengers, those passengers on board a vehicle

scheduled to leave service will be dropped off directly, and thus receive a

shorter than average ride. These two factors appear to offset each other.

Effective vehicle fleet size appears to be a function of the number of

vehicles in service, the number of times vehicles enter and leave service, and



B-25

Table B.4

Modified Models vs. Rochester Data

Actual Unmodif ied Modif ied
Data Model Model

WT 30.5 min. 19.4 min

.

29 . 1 min

RT 16.0 min. 23.6 min. 13.9 min

WT + RT 46.5 min. 43.0 min. 43 . 0 min
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the point where driver reliefs are made in relation to the service area.

Simulation experiments have suggested that the effective vehicle fleet size

may be as much as 20-25% smaller than the actual vehicle fleet size in cases

where vehicles leave service frequently.

To develop a model of effective vehicle fleet size as a function of the

factors noted above would require extensive simulation experiments. Once

again, budgetary constraints did not allow such an effort, and for the purposes

of this supply model it was decided to simply introduce an effective vehicle

fleet size adjustment factor (kn) . This factor should be used to multiply

vehicle fleet size everywhere that it appears in calculating WT (including

the estimation of land subsequently V ^j). Based on the simulation experi-

ments conducted at M.I.T., a reasonable range for this factor would be .7 - 1.0.

For the Rochester test discussed earlier in this Appendix, a value of .85

was used.

The second adjustment was a much simpler one mentioned here only

to avoid confusion. In a DRT system, the number of passengers in a group

travelling together (i.e., a group of 1, 2, 3, or 4 passengers) does not impact

the level of service. Thus in using the model, the desired demand input is

the number of trips , rather than the number of passengers. Since the output

of the demand model is passenger trips, a group size adjustment factor (kg)

has been incorporated in the model.



The final supply model is:

WT = ( 1 + a + 6) / exp (k, / A + 4 ' 2

2 V ’ kn x N V ~1 kn x N + 12
ef f

k,

A
A

)

f L . , k.
__ a , , A A x 4
RT = V

exp k
3

( ~V }

eff

3WT

where

:

m
y 2 V

eff
/ r ~—rr exp (k
kn x N 1

/' A + 4

kn x N + 12

k
2

A
Z

)

D/ k&
N

It should be pointed out that these models, which are incorporated in

the software package, can also be used on their own as a preliminary

design or sketch planning tool.
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APPENDIX C

Program User's Manual FOPCAST (09DEC76) 1

IDENTIFICATION

TITLE: DPT DEMAND FOECASTING PROGRAM (FORCAST)

WRITTEN BY: RICHARD E. NESTLE, C.S.I.

,

SPONSOR: DMTA

INTRODUCTION

FORCAST IS A PROGRAM FOR THE PREDICTION OF PATRONAGE OF DEMAND
RESPONSIVE TPANSIT (DRT) SYSTEMS IN URBAN AREAS OF 10 TO 20 SQUARE
MILES IN SIZE. FORCAST AND THIS WRITEUP HAVE BEEN PREPARED
SIMILARLY TO PROGRAMS AND WFITEUPS RELEASED BY UMT A AS PAPT OF THE
UTPS SYSTEM OF TRANSPORTATION ANALYSIS PROGRAMS. THE USER WHO IS
NOT FAMILIAR WITH THE STRUCTURE OF SUCH PROGPAMS AND WRITEUPS
SHOULD BE PREPARED TO CONSULT THE »UTFS REFERENCE MANUAL'
(HEREAFTER REFERRED TO AS THE 'REFERENCE MANUAL') PREPARED BY:

U.S. DEPARTMENT OF TRANSPOP ATION
URBAN MASS TRANSPORTATION ADMINISTRATION
PLANNING METHODOLOGY AND TECHNICAL SUPPORT DIVISION
WASHINGTON, D.C. 20590

THE REFEPENCE MANUAL IS AVAILABLE ON A COMPUTER TAPE FROM UMT A OR
THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE IN SPRINGFIELD,
VA. FOR $10.25 AS DOCUMENT NUMBER PB-231-865 1/AS.

WITHIN BUDGET LIMITATIONS EVERY ATTEMPT HAS BEEN MADE TO MAKE THIS
PROGRAM APPEAP TO THE USEP LIKE A UTPS RELEASE. HOWEVER, THERE
ARE SEVERAL WAYS IN WHICH FORCAST DIFFERS FROM WHAT ONE MIGHT
EXPECT OF SUCH A UTPS RELEASE. THESE DIFFERENCES APE DISCUSSED IN
MORE DETAIL LATER IN THIS WRITEUP, BUT IN SUMMARY THEY ARE:

(1) THE CATALOGED PPOCEDURE HAS A DUMMY DATASET DEFINED FOR THE
UTPS LOG FILE.

(2) THE WRITEUP DOES NOT DESCRIBE ALL OF THE PFOGRAM MESSAGES
WHICH APPEAR. ONLY THE MOST SIGNIFICANT MESSAGES ARE COVERED.

(3) THE GEQUIV AND GPLOT CONTROL STATEMENTS ARE NOT USED. THE
&PEPIOD STATEMENT IS USED AND IT IS UNIQUE TO FORCAST.

(4) THE PROGRAM WAS NOT DEVELOPED IN CONFORMANCE WITH UMT

A

SOFTWARE DEVELOPMENT PROCESS STANDARDS. THEREFORE THE PROGRAM IS
NOT DOCUMENTED TO THAT LEVEL OF DETAIL.

THE REMAINDER OF THIS SECTION IS DEVOTED TO A SUMMARY DESCRIPTION
OF THE FORMAT OF THIS PROGPAM WRITEUP. THE USER WHO IS FAMILIAR
WITH UTPS PROGRAM WRITEUPS CAN SKIP THIS DESCRIPTION AND BEGIN THE
SUMMARY SECTION WHICH FOLLOWS.

REPORTS - THIS SECTION DESCRIBES THE OUTPUTS FROM FORCAST

.
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FILE TABLE - THIS SECTION DESCRIBES ALL THE FILES WHICH FORCAST
USES. THE READER IS REFERRED TO CHAPTER IV, SECTION H OF THE
REFERENCE MANUAL FOR HELP IN INTERPRETING THIS TABLE. THE ACTUAL
STRUCTURE OF ANY DTPS MATRIX FORMAT FILES IS DESCRIBED IN CHAPTER
VI* SECTION F OF THE REFERENCE MANUAL.

KEYWORD TABLE - THIS SECTION DESCRIBES THOSE KEYWORD EQUALITIES BY
WHICH THE USER CAN CONTROL PROGRAM FUNCTIONS AND/OR SPECIFY INPUT
PARAMETERS TO FORCAST. THESE KEYWORDS ARE INPUT IN THE CONTROL
CARD FILE DESCRIBED IN CHAPTER III OF THE REFERENCE MANUAL.
FORCAST USES THE SPAFAM, 50PTI0N, AND & SELECT STATEMENTS DESCRIBED
IN CHAPTER III, BUT DOES NOT USE THE &PLOT AND &EQUIV STATEMENTS.
FORCAST ALSO HAS ONE ADDITIONAL STATEMENT, 6PFRI0D, WHICH IS
UNIQUE TO FORCAST AND FOLLOWS ALL THE OTHERS. THE CONTROL
STATEMENTS MUST ALL BE PRESENT AND IN THE FOLLOWING ORDER:

1 - SPARAM
2 - 60PTI0N
3 - &SELECT
4 - 5PERI0D (FOLLOWED BY MORE IF DESIRED)

CORE REQUIREMENTS AND EXECUTION TIME - THIS SECTION DESCRIBES THE
CORE REQUIREMENTS AND GIVES SOME EXAMPLE RUNNING TIMES FOR
FORCAST.

DATA CARD FORMATS - THIS SECTION DESCRIBES THE FORMAT OF THE ZONAL
DATA THAT FORCAST REQUIPES.

PROGRAM FLOW - THIS SECTION DESCRIBES THE FLOW OF CONTROL IN
FORCAST. IT IS PRESENTED IN UMTA SPECIFICATION LANGUAGE FORMAT
AND ILLUSTRATES THE WAY IN WHICH THE MODELS RELATE TO EACH OTHER
AND THE USER'S INPUTS.

SAM1PLE PRODUCTION RUN SETUPS - THIS SECTION PRESENTS SOME EXAMPLE
CONTROL CARD FILES AND JCL WHICH ILLUSTRATE HOW VARIOUS TYPES OF
FORCAST PUNS MIGHT BE MADE.

CATALOGED PROCEDURE - THIS SECTION PRESENTS A CATALOGED PROCEDURE
THAT WOULD BE USEFUL IN PUNNING FORCAST. IT IS MODELLED AFTER
THAT SUPPLIED FOR PROGRAM UMODEL IN THE UTPS SYSTEM.

NOTES - THIS SECTION PRESENTS MORE INFORMATION ON THE KEYWORD
EQUALITIES. OTHER INFORMATION THAT RELATES TO REFERENCES IN THE
DOCUMENTATION IS PRESENTED.
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SUMMARY

FORCAST IS AN INTEGRATED SYSTEM OF MODELS WHICH ALLOWS THE USER TO
PREDICT THE PATRONAGE OF A DEMAND RESPONSIVE TRANSIT (DPT) SYSTEM
OVER THE COURSE OF A DAY. FORCAST HAS TWO PRINCIPAL FEATURES.
FIRST, FORCAST INCORPORATES AN EQUILIBRIUM ALGORITHM TO RECONCILE
THE SUPPLY AND DEMAND SIDES OF THE MODELLING PROBLEM. THE USER
CAN CONTROL THIS PROCESS BY SETTING THE MAXIMUM NUMBER OF
ITERATIONS TO BE PERFORMED AS WELL AS AN ERROR LIMIT CRITERIA BY
WHICH THE ITERATIONS CAN BE TERMINATED BEFORE THE MAXIMUM
SPECIFIED. SECOND, FORCAST CAN BE EXERCISED OVER VARYING
CONDITIONS THROUGHOUT A DAY IN THE THE COURSE OF A SINGLE RUN.
THE USER CONTROLS THIS FEATURE BY PROVIDING A SEPARATE &PERIOD
STATEMENT FOR EACH TIME PERIOD THAT HE WISHES TO ANALYZE. ON
THIS STATEMENT HE CAN SPECIFY PARAMETERS WHICH HAVE CHANGED FROM
THE PREVIOUS PERIOD. HE DOES NOT HAVE TO SPECIFY ANY THAT REMAIN
THE SAME.

FORCAST PROVIDES INFORMATION ON THE FOLLOWING DURING EACH PERIOD
THAT THE USER SPECIFIES:

(1) VEHICLE PRODUCTIVITY

(2) AVERAGE DRT PIDE AND WAIT TIMES

(3) MODAL VOLUMES AND MODE SPLITS IN PEPCENTS

THERE ARE SEVEN PRINCIPAL MODELS IN FORCAST. THEY APE:

SUPPLY:
(1) DRT WAIT TIME
(2) DRT PIDE TIME

DEMAND:
(3) WORK MODE CHOICE
(4) NON WOPK TRIP FREQUENCY
(5) HOME BASED, NON WORK MODE AND DESTINATION CHOICE
(6) NON HOME BASED, NON WORK MODE AND DESTINATION CHOICE

DEMOGRAPHIC:
(7) MARKET SEGMENTATION

THE USER CAN SUPPLY INPUTS TO ALL OF THE MODELS, BUT IN MOST CASES
THE DEFAULTS SUPPLIED WILL BE SUFFICIENT FOR HIS PURPOSES. THIS
ALLOWS THE USER TO CONCENTRATE ON THOSE VARIABLES WHICH ARE MOST
INTERESTING FROM A POLICY POINT OF VIEW. THUS, AT THE SIMPLEST
LEVEL OF DETAIL THE USER NEED BE CONCERNED ONLY WITH SUPPLYING
SERVICE AREA CHARACTERISTICS AND MODEL PARAMETERS SUCH AS:

(1) ZONAL DATA INCLUDING:
COORDINATES
AREAS
EMPLOYMENT
POPULATION

(2) A DAILY WORK TRIP TABLE
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(3) THE NUMBER OF NON-WORKERS OVER THE AGE OF 16 IN THE SERVICE
AREA

(4) LEVEL OF SERVICE FOR NON-DRT MODES WHICH ARE AVAILABLE
INCLUDING:

IN VEHICLE TIMES ON AN O-D BASIS
OUT OF VEHICLE TIMES ON AN O-D BASIS
FARES ON AN O-D BASIS OR AS AN AVERAGE SYSTEM FARE

(5) COST INFORMATION FOR DRT EITHER IN O-D FORM OR AS A SINGLE
SYSTEM AVERAGE

(6) NUMBER OF VEHICLES IN SERVICE AND THEIR CAPACITY

(7) NUMBER OF ANALYSIS ZONES SERVED DIRECTLY BY DPT AND THE NUMBER
OF ZONES AVAILABLE THROUGH A FEEDER CONNECTION

(8) BEGINNING AND ENDING OF EACH ANALYSIS PERIOD

(9) INITIAL ESTIMATE OF DRT PATRONAGE

(10) PRECISION OF THE NON-WORK MODEL RESULTS

AT A SLIGHTLY MORE COMPLICATED LEVEL, THE USER MIGHT CONSIDER
OVERRIDING THE DEFAULT VALUES USED FOR OTHER VARIABLES SUCH AS:

(1) PERCENT OF TOTAL POPULATION OVER THE AGE OF 64

(2) AUTO OCCUPANCY OF SHARED RIDE TRIPS

(3) WORK TRIP DISTRIBUTIONS BY TIME OF DAY

(4) AVERAGE NUMBER OF PEOPLE RIDING TOGETHER IN GPOUPS ON THE DRT
SYSTEM

(5) EFFECTIVE VEHICLE FLEET SIZE ADJUSTMENT FACTOR

(6) VEHICLE SPEEDS FOR DRT AND AUTO MODES

(7) LOAD AND UNLOAD DELAYS FOR DRT

(8) DISPATCHING SYSTEM PARAMETERS

FINALLY, THERE IS A THIRD LEVEL AT WHICH THE USER CAN MAKE
ADJUSTMENTS TO THE MODEL SYSTEM. THE VARIABLES AT THIS LEVEL ARE
GENERALLY VERY DIFFICULT TO GENERATE, SO IT IS EXPECTED THAT MOST
USERS WILL NEVER HAVE OCCAISION TO OVERRIDE THE DEFAULT VALUES FOR
THE FOLLOWING:

(1) DISTRIBUTION OF POPULATION OVER HOUSEHOLD SIZE AND AUTO
AVAILABILITY

(2) DISTRIBUTION OF DWELL TIMES AT HOME AND AWAY FROM HOME FOR
PERSONS MAKING NON-WORK TRIPS

(3) PERCENTAGE OF RESIDENTS WHO DO MAKE NON-WORK TRIPS IN A GIVEN
DAY





FORCAST(09DEC76) 6

REPORTS

1. DYNAMICALLY ROUTED DEMAND MODEL ITERATION REPORT

THE USER OBTAINS THIS REPORT BY SPECIFYING TRACE (6) =T ON CONTROL
STATEMENT &OPTION.

FORC6 3100 (TRACE) DYNAMICALLY ROUTED ITERATION REPORT

PERIOD
BEGIN
END

ITERATION

1 CURRENT VALUE OF ERROR
530 CONVERGENCE LIMIT
730
1 AVERAGE PERSON RIDE TIME

AVERAGE PERSON RIDE DISTANCE

0.4382
0.0010

17.0403 MINUTES
3.4561 MILES

BASIC

MODE VOLUMES (PERSON TRIPS)
MODE SPLITS (PERCENTS)

AUTO
DRIVE SHARED DRT BUS TAXI TOTAL
ALONE RIDE

WORK MODEL 3705 6876 118 579 0 11278
32.9 61.0 1.0 5.1 0.0

NON-WORK MODEL 958 1457 1 0 0 2416
39.7 60.3 0 . 0 0.0 0.0

TOTAL 4663 8333 119 579 0 13694
34. 1 60. 9 0.9 4. 2 0.0

ADDITIONAL SIMULATION MODEL INFORMATION:
NUMBER OF ENTITIES CONSIDERED: 48
NUMBER OF PERSONS SIMULATED: 1757. 376953
NUMBER OF ENTITIES-TRIPS SIMULATED 11

THIS REPORT PROVIDES A SUMMARY OF THE DEMAND MODEL RESULTS ON AN I

BY ITERATION BASIS WITHIN EACH TIME PERIOD BEING ANALYZED.
MODAL VOLUMES IN TRIPS AND MODAL SPLITS IN PERCENTS ARE REPORTED
FOR ALL POSSIBLE MODES. THESE ARE BROKEN DOWN BETWEEN THE WORK
AND NON-WORK DEMAND MODELS.
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2. DYNAMICALLY ROOTED DEMAND MODEL PERIOD REPORT

THE USER CAN OBTAIN THIS REPORT BY SPECIFYING DUMP (6) =T ON CONTROL
STATEMENT 60PTI0N. THIS REPORT IS IDENTICAL TO THE ITERATION
REPORT EXCEPT THAT IT IS PRODUCED AT THE END OF EACH PERIOD. AN
ACCOMPANYING MESSAGE INDICATES WETHER THE ITERATIVE PROCESS WAS
TERMINATED BY THE MAXIMUM NUMBER OF ITERATIONS ALLOWED OR THE
VALUE OF THE ERROR FUNCTION.

3. SUPPLY MODEL ITERATION REPORT

THE USER ALWAYS OBTAINS THIS REPORT.

FORC8 3900 (REPORT) :

UNCONSTRAINED PRODUCTIVITY 6.493 GROUPS PER VEH-HR

CONSTRAINED AND SMOOTHED PRODUCTIVITY 6.493 GROUPS PEP VEH-HR

AVERAGE GROUP WAIT TIME 34. 87 MINUTES

AVERAGE GROUP RIDE TIME 13. 42 MINUTES

AVERAGE GROUP RIDE DISTANCE 2.721 MILES

THIS REPORT SUMMARIZES THE LEVEL OF SERVICE PERCEIVED BY DRT USERS
ON AN ITERATION BY ITERATION BASIS WITHIN EACH PERIOD.
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FILE TA BLE

FI1I_NAM1 ddname CONTENTS OR FUNCTION

SYSIN FT05F001 1. PROGRAM CONTROL CARDS

2.

ZONAL DATA CARDS

J1-
J9

FT1 1F001
-FT19F001

OPTIONAL MATRIX FILES

SYSOUT FT06F001 PROGRAM REPORTS AND MESSAGES

FT20F001
FT21F001

PROGRAM CONTROL CARD IMAGES
LOG FILE
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KEYWORD TA BLE

NAMELIST - SPARAM

THESE NAMELIST VARIABLES ARE STORED IN COMMON <PAP>.

+ > *-— — * —
| KEYWORD | TYPE ! DEFAULT! MAX ! VALUE OR PURPOSE

- + + 4-

f

I

INZONS 1*4 20 100 NUMBER OF ZONES SERVED BY
DEMAND RESPONSIVE TRANSIT
<1 . 3>

EXZONS 1*4 0 100 NUMBER OF ZONES NOT SERVED
BY DRT <1. 1>,<1.3>

TRPTAB 1*4 101 UTPS TABLE NUMBER FOP WORK
TRIP TABLE <1.4>

AMWORK R*4
(12)

7*0,
5*20.

PERCENT OF WORK TRIPS BEING
MADE IN HOME TO WORK
DIRECTION DURING EACH OF
THE HOURS FROM MIDNIGHT TO
NOON <1 . 5>

PMWORK R*4
(12)

5*20,
7*0

SAME AS <AMWORK> ONLY FOR
WORK TO HOME TRIPS FROM
NOON TO MIDNIGHT <1.5>

ADA L*4 T IF =T THEN AUTO DRIVE ALONE
IS ALLOWED DUPING AT LEAST
ONE PERIOD <1. 1>

SHR L*4 X SAME AS <ADA> FOR SHARED
RIDE <1.1>

DRT L*4 T SAME AS <ADA> FOR DPT <1.1>

BUS L*4 T SAME AS <ADA> FOR BUS
SERVICE <1. 1>

TAX L*4 T <NOT USED>

SIMUL 1*4 100 NUMBER OF ENTITIES TO BE

AUTOS R*4
(5)

SIMULATED ON THE NON-WORK
MODELS < 1 . 2>

D IS TP IP UTIO N OF THE PERCENT
OF THE POPULATION FALLING
INTO EACH OF 5 LEVELS OF
AUTO OWNERSHIP. THE LEVELS
ARE 0,1, 2, 3, AND 4 OR MORE.
< 1 . 6 >

F*4 SAME PS FOR <AUTOS> BUT FORHHOLDS
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(5) LEVELS OF HOUSEHOLD SIZE
(COUNTING PEOPLE > 16 ONLY)
THE LEVELS ARE 1,2,3, 4,
AND 5 OR MOPE. <1.6>

OVR64 R*4 PERCENT OF THE TOTAL
POPULATION >64 <1.6>

HHAVE R*4 -1 (NOT USED)

NWPOP R*4 2000 NUMBER OF NON-WORKERS OVER
AGE 16 IN THE SERVICE AREA
<1 . 4>

PTRIP R*4
(5,2)

22. ,38.,
3*47. ,38.,
4*48.

PTRIP (N,M) IS THE PERCENT
OF RESIDENTS WHO DO MAKE
HOME BASED NON WORK TRIPS
IN A GIVEN DAY BY AOTO AND
AGE BREAKDOWN AS FOLLOWS:
N=1-5 FOR ADTOS/HH =0-4+
M=1 , 2 FOR AGE<65, AGE>=65

< 1 . 7>

HDWEL1 R*4
(48,6)

DISTRIBUTION OF PERCENT OF
FIRST NON WORK TRIP
DEPARTURES FROM HOME BY
HALF HOUR INTERVALS
STARTING AT MIDNIGHT FOR
EACH OF 6 GROUPS OF PERSONS
AS FOLLOWS: <1 . 7>

(• • # 1 ) •

(• • , 2 )

:

(• • , 3 )

:

(• • * 4) i

(• > , 5)

:

(.., 6 ):

AUTOS PER
AGE <65

HH H o a

AUTOS PER
AGE <65

HH = 1,

AUTOS PER
AGE <65

HH = 2*

AUTOS PER
AGE >=65

HH =0,

AU JOS PER
AGE >=65

HH = 1,

AUTOS PER
AGE >=65

HH = 2 +

HDWEL2 R*4
(48,6)

DISTRIBUTION IN PERCENTS OF
LENGTH OF STAY AT HOME
BETWEEN NON WORK TRIPS IN
HALF HOUR INTERVALS.
BREAKDOWN AMONG PERSON
TYPES IS THE SAME AS FOR
<HDWEL1>. <1 . 7>

NHDWEL R*4
(48,6)

SAME AS <HDWEL2> BUT FOR
STAYS AWAY FROM HOME <1.7>
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GRUPW R*4 1.0 AVERAGE DRT GROOP SIZE
FOR WORK TRIPS <1.9>

GRUPNW F*4 1.2 AVERAGE DRT GROUP SIZE
FOR NOU-WORK TPIPS <1.
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NAMELIST - 60PTI0N

THESE VARIABLES WILL BE READ INTO COMMON AREA <OPT>.

+ ------ + 4- 4

8 KEYWORD | TYPE | DEFAULT| MAX | VALUE OR PURPOSE 8

- —-- + — —
RDUTIL L*4 F IF =T THEN READ &UTILIT

NAMELIST TO ALLOW THE USER
TO INPUT SOME ADDITIONAL
PARAMETERS OF HIS OWN.

TRACE L*1
(100)

100*F TRACE CONTROL SWITCHES

DUMP L* 1

(100)
100*F DUMP CONTROL SWITCHES

GENT 1*4
(12)

12*0 THIS
THAT

IS A VECTOR OF VALUES
THE USER CAN

OPTIONALLY GENERATE INTO
HIS INPUT MATRICES RATHER
THAN READ THE MATIRICES
FROM FILES. FOR I = 1 TO
10 <GENT (I) > WOULD BE LOADED
INTO EVERY CELL OF THE
MATRIX CONTROLLED BY
<TABLES (I) > IN NAMELIST
& PERIOD. <GENT (1 1) > WOULD
BE LOADED INTO THE MATRIX
CONTROLLED BY <TRPTAB>.
<GENT (1 2) > IS NOT USED.
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NAMELIST - SSELECT

THESE VARIABLES HILL BE READ INTO COMMON AREA <SEL>.

4- 4- 4- 4- 4- 4-

J KEYWORD | TYPE | DEFAULT | MAX | VALUE OR PURPOSE !

4-- 4- 4- 4- 4- ---- 4-

REPORT L*1 100*F
( 100 )

REPORT SELECTION SWITCHFS.
<NOT USED>
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NAMELIST - &PERIOD

THESE VARIABLES WILL BE READ INTO COMMON AREA <PER>.

+ --

\ KEYWORD | TYPE \ DEFAULTI MAX | VALDE OR PURPOSE |

-*•- + > + ---*

BEGIN 1*4 600 BEGINNING OF ANALYSIS
PERIOD IN MILITARY TIME.
FIRST PERIOD SHOULD NOT
BEGIN LATER THAN A

SUBSTANTIAL PART OF THE
WORK AND NON WORK DEPARTURE
DISTRIBUTIONS OR THESE
TRIPS WILL NOT BE CORRECTLY
MODELLED. <4.1>

END 1*4 1800 END TIME OF ANALYSIS
IN MILITARY TIME. <4.

PERIOD
1>

VEHS 1*4 10 NUMBER OF DYNAMICALLY
ROUTED VEHICLES IN SERVICE
<4. 3>

VEHCAP 1*4 20 PASSENGER CAPACITY OF
VEHICLES <4 . 4>

CARCOS E*4
(10)

24,2,4,
7*0

PARAMETERS TO BE USED IN
AUTO RELATED CALCULATIONS:
<4. 5>

(1) : AVERAGE AUTO SPEED
IN MPH (USED FOR PER MILE
COST CALCULATIONS)

(2) : PENALTY FOR SHARED
RIDE IN VEHICLE TRAVEL
TIME RELATIVE TO DRIVE
ALONE TIME (MINUTES)

(3)

: PENALTY FOP SHARED
RIDE OUT OF VEHICLE TRAVEL
TIME RELATIVE TO DRIVE
ALONE TIME (MINUTES)

(4)

- (10) : NOT USED
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TAXFAR F*4 'MATRIX* FAPE STRUCTURE FOR TAXI
(2) MODE: <NOT USED>

•MATRIX' - READ FARE
MATRIX FROM TABLE GIVEN BY
<TABLES (8) >

•COMPUTE' - FIGURE FAPE
USING <TAXCOS>

•OLD* - USE FARE FROM
PREVIOUS PERIOD

BUS FAR F*4
(2)

•MATRIX' FARE STRUCTURE FOR BUS
MODE: <4. 6>

•MATRIX' - READ FAPE FROM
TABLE GIVEN BY <TABLES (7)

'FIXED' - USE <BUSCOS>

•OLD* - USE FARE FROM
PREVIOUS PFRIOD

DRTFAR F*4
(2)

'MATRIX' LIKE <BUSF A P > BUT FOR DPT
AND USES TABLE GIVEN IN
<TABLES (9 ) > <4 . 6>

TAXCOS F*4 50,70, PARAMETERS FOF TAXI FARE
(10) 8*0 CALCULATION IF <T AXFA R>

= 'COMPUTE ' : <NOT USED>

(1) - CONSTANT IN CENTS

(2) - MILEAGE CHARGE IN
CENTS/MILE

(3) -(10) - NOT USED

BUSCOS P*4 50 BUS FARE IN CENTS IF
< BUS F AR> =' FIXED' <4.6>

DRTCOS R*4 100 DRT FAPE IN CENTS IF
<DRTF AP> =' FIXED* <4. 6>

SHROCC P*4 2. 5 SHARFD RIDE AUTO OCCUPANCY

LIMIT P* 4 .25 CONVERGENCE LIMIT CRITERIA
<4 . 2>

MAXITR 1*4 3 MAXIMUM NUMBER OF
ITERATIONS TO BF PERFORMED
EACH PERIOD EVEN IF THE
CONVERGENCE LIMIT IS NOT
PEACHED. <4 . 2>

ISHARE R*4 5 NOT USED
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PATRON R*4 300 INITIAL ESTIMATE OF
PATRONAGE FOR THE PERIOD
(WILL BE SPREAD EVENLY
OVER ALL O-D PAIRS) <4.7>

NEWZON L*4 T IF =T ZONAL DATA CARDS ARE
READ IN THIS PERIOD. ALL
ZONAL DATA WILL BE REREAD.

TABLES 1*4
(10)

101,102,
...,110

LIST OF UTPS TABLE NUMBERS
FOR MATRICES TO BE READ.
THE INDICES IN <TABLES>
CORRESPOND TO THE FOLLOWING
HATRICES: <4.8>,<4.9>

1 - UNUSED
2 - IVTT FOP ADA ,SHR
3 - IVTT FOR BUS
4 - IVTT FOR FEEDER

LINEHAUL
5 - OVTT FOR BUS
6 - OVTT FOR FEEDER

LINEHAUL
7 - FARE FOR BUS
8 - UNUSED
9 - FARE FOR DPT
10 - FARE FOR FEEDER LH

(IVTT = IN VEHICLE TRAVEL
TIME, AND OVTT = OUT OF
VEHICLE TRAVEL TIME). ALL
TIMES ARE IN MINUTES. IF
THE VALUES FOR THE ENTRIES
IN <TABLES> DO NOT CHANGE
FROM PERIOD TO PERIOD A NEW
TABLE IS NOT READ
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NAMELIST - SUTILIT

THESE VARIABLES APE STORED IN COMMON APEA <UTIL>. ONLY THE
VARIABLES PRECEEDED BY AN ASTERISK ARE IN THE NAMELIST.

+ + * f

| KEYWORD | TYPE | DEFAULT| MAX | VALUE OR PURPOSE I

+ - f— f

ZONES 1*4 20 TOTAL NUMBER OE ZONES
(=INZONS+EXZONS)

MODES 1*4 10 MAXIMUM NUMBER OF MODES IN
THE MODEL SYSTEM.

*NMXS 1*4 31 NUMBER OF O-D MATRICES
STORED INTERNALLY

NMXI4 1*4 11 NUMBER OF I NTEGER*4
MATRICES

NMXR4 1*4 7 NUMBER OF REAL* 4 MATRICES

DYNA L*4 T IF =T THEN DRT IS BEING
MODELLED IN THE CURRENT
PERIOD

NPER 1*4 0 CURRENT ANALYSIS PERIOD
NUMBER

ZONFIL 1*4 5 FORTRAN FILE NUMBER FOR
ZONAL DATA

ZONDAT 1*4 7 NUMBER OF ZONAL DATA ITEMS
TO BE READ FROM THE ZONE
DATA CARDS.

Z PLUS 1 1*4 21 USED FOR DIMENSIONING
PURPOSES, (= ZONES « 1)

*FA R*4 1.3 FACTOR FOP CONVERTING
STRAIGHT LINE DISTANCE TO
TRAVEL DISTANCE ON THE
GROUND <1 . 8>

NEED L*4
(10)

10*F USED TO DETERMINE WHETHER
THE TABLES CONTROLLED BY
<TABLES> NEED TO BE READ IN
AT THE START OF A PERIOD
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BKDOWN

COEFDE

B*4
(5,5,2)

MATRIX GIVING THE DEMO-
GRAPHIC BREAKDOWN OF THE
POPULATION. IT IS COMPUTED
FROM AUTOS, HHOLDS, AND
OVR64.
1ST INDEX - AUTO LEVEL
INDEX (0,1, 2, 3, 4 + )

2ND INDEX - HOUSEHOLD SIZE
INDEX (1 ,2, 3,4,5+)

3RD INDEX = 1 IS FRACTION
OF TOTAL POPULATION IN
THIS COMBINATION OF AUTOS
AND HOUSEHOLD SIZE

3RD INDEX = 2 IS FRACTION
OF THIS CELL WHICH IS
OVER 64

R*4 COEFFICIENTS FOR DEMAND
(300) MODELS:

1-100 WORK MODEL
101-200 HOME BASED NON

WORK MODEL
201-300 NON HOME BASED

NON WORK MODEL

WITHIN EACH BLOCK OF 100,
1-50 APE DIRECT MODES AND
51-100 ARE ACCESS MODES.
WITHIN EACH BLOCK OF 50
THEY ARE ORGANIZED IN
GROUPS OF 10 FOR ADA, SHR,
DPT, BUS, AND TAX IN THAT
ORDER
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COEFSU R*4 PAPAMETEPS FOR THE SUPPLY
(100) MODEL <1 . 9>

THE USEP IS MOST INTERESTED
IN THE FOLLOWING PARAMETERS:

.5, (D - PAX LOAD DELAY IN
MINUTES

• 5, (2) • PAX UNLOAD DELAY IN
MINUTES

15...... (3) - VEHICLE SPEED (MPH)
.85, (12) * EFFECTIVE VEHICLE

FLEET SIZE FACTOR
o.. (13) <a> COMPUTER DISPATCH

CONSTANT
o.. (14) - WEIGHT ON RIDE TIME
• 5, (15) FRACTION BY WHICH

NEW PRODUCTIVITY IS
WEIGHTED

10. , (16) PRODUCTIVITY MAXIMUM
FOR THE START OF
EACH PERIOD

2., (17) PRODUCTIVITY MINIMUM
FOR THE START OF EACH
PERIOD

.1 (18) MINIMUM EFFECTIVE
VEHICLE SPEED IN
MILES PEP MINUTE

THE FOLLOWING VARIABLES WILL BE USED TO REFERENCE
MATRICES INTERNALLY.

*S AVT 1*4 01 SCRATCH ;MATRIX FOR ERROR
AIVT 1*4 02 I VTT FOR ADA, SHR, TAX
*BIVT 1*4 03 I VTT FOP BUS
*ZIVT 1*4 04 I VTT FOP FEEDER LINEHAUL
*BOVT 1*4 05 OVTT FOR BUS
*ZOVT 1*4 06 0 VTT FOR FEEDER LINEHAUL
BFAR 1*4 07 FARE FOR BUS
*TFAR 1*4 08 FARE FOP TAX
*DFAR 1*4 09 FARE FOR DRT
*ZFAR 1*4 10 FARE FOR LINE HAUL
*DLYT 1*4 11 DAILY WORK TRIP TABLE
*ADAT 1*4 12 MODAL TRIP MATRIX FOR ADA
*SHRT 1*4 13 MODAL TRIP MATRIX FOR SHR
*DRTT 1*4 14 MODAL TRIP MATRIX FOR DRT
BUST 1*4 15 MODAL TRIP MATRIX FOR BUS
*TAXT 1*4 16 MODAL TPIP MATRIX FOR TAX
*DIVT 1*4 17 I VTT FOR DRT
*DOVT 1*4 18 OVTT FOR DRT
*A AIVT 1*4 19 I VTT FOR AUTO «• LINE HAUL
AAOVT 1*4 20 OVTT FOR ADA LINE HAUL
AAFAR 1*4 21 FARE FOR ADA LINE HAUL
*ASOVT 1*4 22 OVTT FOR SHR LINE HAUL
ASF AR 1*4 23 FARE FOR SHR LINE HAUL
ATOVT 1*4 24 OVTT FOR TAX LINE HAUL
ATFAR 1*4 25 FARE FOR TAX LINE HAUL
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ABIVT 1*4 26
ABOVT 1*4 27
ABFAR 1*4 28
ADIVT 1*4 29
*ADOVT 1*4 30
ADFAR 1*4 31

THE FOLLOWING VARIABLES WILL
ZONAL DATA ITEMS INTERNALLY.

*NZ 1*4 01
*NA 1*4 02
NX 1*4 03
NY 1*4 04
NE 1*4 05
NP 1*4 06
NT 1*4 07

I VTT FOR BUS LINE HAUL
OVTT FOR BUS LINE HAUL
FARE FOP BUS LINE HAUL
I VTT FOR DRT LINE HAUL
OVTT FOR DRT LINE HAUL
FARE FOR DRT LINE HAUL

BE USED TO REFERENCE

ZONE NUMBER INDEX
ZONAL AREA
X COORDINATE INDEX
Y COORDINATE INDEX
EMPLOYMENT
POPULATION
TAXI WAIT TIME <NOT USED>
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CORE REQUIREMENTS AND EXECUTION TIME

FORCAST REQUIRES 1 1 7K BYTES FOR BASIC PROGRAM STORAGE WHEN THE
OVERLAY STRUCTURE IS USED. ADDITIONAL STORAGE IS REQUIRED AS A

FUNCTION OF: BUFFEP SIZES, NUMBER OF ZONES, AND NUMBER OF
SIMULATED ENTITIES. THE NUMBER OF ZONES IS BY FAR THE MOST
CRITICAL ELEMENT.

FORCAST'S RUNNING TIME IS DETERMINED BY THE SAME ELEMENTS AS COPE
PLUS THE NUMBER OF PERIODS REQUESTED AND THE NUMBER OF ITERATIONS
PEE PERIOD.

THE FOLLOWING EXAMPLES RELATE TO EXPERIENCE ON A IBM 370/158 WITH
VS 2

:

NES SIMUL # CF
PERIODS

ITERATIONS
PER_PERIQD

CORE CPU
_MIN_

5 100 1 1 1 36 .07
5 500 3 5 140 1.73
5 500 3 2 140 .67
9 500 3 5 152 5.00

16 1000 4 5 - 28. 62
14 100 4 2 - 1.67
23 250 4 1 - 3.53
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DATA CARD FO RMATS

ZONAL DATA CAPDS:

THESE CABDS FOLLOW THE SDATA INPUT CONTBOL CABD. THEBE IS ONE SEP
OF ZONES+1 CARDS FOR EACH TIME NEWZON=T IS
SPECIFIED ON AN SPEBIOD CONTBOL CABD. THE CABDS CONSIST
OF ONE HEADER CARD AND 'ZONES' DATA CARDS. THF 'ZONES' DATA
CARDS MUST BE IN ORDER BY ZONE NUMBER.

ZONAL DATA HEADER CARD FORMAT
COLUMNS FORMAT CONTENTS

1-10 110 PERIOD IN WHICH THIS SET IS TO BE READ

ZONAL DATA CABD FORMAT

1-10
11-20
21-30
31-40
41-50
51-60
61-80

F10.0
F10.0
F10.0
F10.0
F10.0
F10.0

110 ZONE NUMBER
ZONAL AREA IN SQUARE MILES
ZONE X COORDINATE (IN UNITS OF MILES)
ZONE Y COORDINATE (IN UNITS OF MILES)
TOTAL EMPLOYMENT
TOTAL POPULATION
NOT USED
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PROGRAM FLOW

PROCEDURE FCAST (FOPCAST)
SIGNON
INITIALIZE AREA NAMELIST DATA
READ AREA NAMELISTS
CHECK AREA NAMELIST DATA
READ AREA DATA MATRICES
INITIALIZE PERIOD NAMELIST DATA (FORC3 A)
WHILE OPERATING PERIOD DATA EXISTS

INPUT OPERATING PERIOD DATA (FORC3B)
INITIALIZE OPERATING PERIOD RESULTS (FORC3C)
MODEL DYNAMICALLY ROUTED SERVICE (FORC6)

PROCEDURE INPUT OPERATING PERIOD DATA (FORC3B)
READ PERIOD NAMELISTS
CHECK PERIOD NAMELIST DATA
READ PERIOD DATA MATRICES
READ PERIOD DATA VECTORS
PRINT OPERATING PERIOD DESCRIPTION REPORT

PROCEDURE MODEL DYNAMICALLY ROUTED SERIVCE (FORC6)
INITIALIZE DRT TRIP MATRIX
SAVE DRT TRIP MATRIX (FOR47A)

ERROR: CONVERGENCE LIMIT «-1

NITER :=1

WHILE ERROF>=CONVERGENCE LIMIT AND NITER <=MAXITR DO
FIND DYNAMICALLY ROUTED SUPPLY (FORC8)
INITIALIZE ALL MODAL MATRICES TO ZERO (FORC46)
IF WORK TRIP FRACTION > 0 THEN

FIND WORK DEMAND (FORC9)
IF NUMBER OF SIMULATED ENTITIES > 1 THEN

FIND NONWORK DEMAND (FORClO)
CREATE ERROR MEASURE (FOR47B)
SAVE DPT TRIP MATRIX (FOR47A)
NITER: =NITER+

1

IF REQUESTED PRINT DYNAMICALLY ROUTED ITERATION REPORT
RESET PERSON FILE INDICES (FOR50C)
PRINT NONWORK DYNAMICALLY ROUTED PERIOD REPORT (FOFC57)
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PROCEDDBE FIND WOEK DEMAND (FOBC9)
INITIALIZE ALL MODAL MATEICES TO ZERO
FOR EACH LEVEL OF AUTO AVAILABILITY DO

FOR EACH LEVEL OF HOUSEHOLD SIZE DO
CALCULATE POPULATION IN CURRENT MARKET SEGMENT
IF POPULATION > 0 THEN

FOR EACH HOME ZONE DO
FOR EACH WORK ZONE DO

COMPUTE NUMBER OF WORK TRIPS
IF NUMBER OF WORK TRIPS>0 THEN

IF EITHER WORK ZONE OR HOME ZONE IS AN
EXTERNAL ZONE THEN

INVOKE FEEDER OPTION
ACCUMULATE MODE SPLITS

ELSE
LOAD VARIABLES INTO BUFFER
EVALUATE LOGIT MODEL
ACCUMULATE MODE SPLITS

SUMMARIZE WORK DEMAND
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PROCEDURE FIND NONWORK DEMAND (FORCl 0)

COMMENT - A SIMULATED ENTITY IS A RECORD CONSISTING OF:
HOME ZONE
ZONE NUMBER OF CURRENT LOCATION (=0 IF AT HOME)
MARKET SEGMENT (AUTO AVAILABILITY AND HOUSEHOLD SIZE)
DEPARTURE TIME FOR NEXT TRIP

IF FIRST TIME THROUGH THEN
SET PERSON FILE INDICES (FOR50A)

CALCULATE TOTAL POPULATION IN SERVICE AREA
FOR EACH HOME ZONE DO

FOR EACH MARKET SEGMENT DO
COMPUTE WEIGHT OF EACH SIMULATED ENTITY
CALCULATE NUMBER OF SUCH ENTITIES
FOR EACH ENTITY TO BE SIMULATED IN EACH MARKET

SEGMENT AND HOME ZONE COMBINATION DO
DRAW RANDOM FIRST DEPARTURE TIME (FORC49)
CREATE PERSON
PUT PERSON (FOR 50B)

RESET PERSON FILE INDICES (FOR50C)
RESET PERSON FILE COUNTERS (F0R50E)
HOMFID: =0
MARKETID: =0
WHILE PERSONS EXIST FROM LAST PERIOD DO

GET PERSON (FOR50D)
IF PERSON (DEPARTURE TIME) <= END THEN

IF PERSON (HOME ZON E) OHO MEID OR PERSON (MARKET
SEGMENT) OMARKETID THEN

HARKETID=PERSON (MARKET SEGMENT)
HOMEID=PERSON (HOME ZONE)
COMPUTE MATRICES OF CUMULATIVE PROBABILITIES (FORC51)

PERFORM NONWORK DEMAND MODEL (FORC52)
PUT PERSON (FOR50B)

SAMPLE PRODUCTION RUN S ETUP

// EXEC FORCAST, TIME=(05) ,LIB=' WYL. AR.CLW. AUG16* , MEMB=FORC AST,
// J1='DSN=WYL.AR.CLW.SKPLMXS1 (WORKTIOK) «,

// UNITJl='2314,V0L=SEP=WYL001 '

,

// J2='DSN=WYL. AR.CLW. SKPLMXS (AIVT16) ',

// UNITJ2=*2314,VOL=SER=WYL001 *

,

// DISPJ1=* (SHE, KEEP) *

,

// DISPJ2=* (SHR, TEEP)

*

//FORCAST. SYSIN DD *

SAMPLE RUN: AR EA=6 MI POP = 10K VEHS = 3 DRT FARE=$.50 BUS=F

PERIODS APE 6-9, 9-3, 3-6; EACH HAS 2 ITERATIONS

SPAR AM INZONS=5, EXZ0NS=0, TRPTAB=101,
T AX=F, BUS=F, S IMUL=500

,

AUTOS=8. , 48., 36., 8., 0.,
HHOLDS=1 5. , 55., 19., 8., 3.,
OVR64= 12., NWPOP=2800,
A MWORK = 0. , 0., 0., 0., 5., 5., 40., 30., 10., 5., 5., 0.,
PMWORK=0. , 0., 0., 20., 30., 30., 20., 0., 0., 0., 0., 00.,
SEND
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SOPTION GENT=10*0, GENT (8) *1,
TRACE (6) =T, DUMP (6)=T,
TRACE (8) =T, RDUTIL=T,
TRACE (9) =F, DUMP (9) = F,
TRACE (10) =F , DUMP (1 0) =F,
TRACE (17) =T, DUMP (1 7) =T r

SEND
SSELECT REPORT-1 00*F SEND
&UTILIT COEFSU (1J=.5».5, 16.2, COEFSU (1 2) =. 85 , . 4, . 1

,

COEFDE (31) =2.

,

SEND
&PERIOD BEGIN-6QQ, END=900»

VEHS=3» LIMIT=. 0001 s PATRON=50 #

¥EHCAP=1

2

,

TABLES (2) =201

,

MAXITR=2, NEWZON=T,
D RTFAR=' FIXED' , DRTCOS=50.

,

SEND
&PERIOD

BEGIN=900, END=1500, PATR0N=200, NEWZON=F,
SEND
SPERIOD

BEGIN= 1500, END=1 800, PATR0N=110.,
SEND
SDATA

1 PERIOD WHEN THIS ZONAL DATA WILL BE READ
1 .72 2.235 2.235 800 1000
2 1.28 2.235 3.010 350 2250
3 1.28 3.010 2.235 250 3000
4 1.28 2.235 1.410 250 2000
5 1.28 1.410 2.235 350 1750
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CATALOGED PROCEDURE

//*
//*
//*
//FORCAST
//
//
//
//
//
//
//
//
//
//
//
//FORCAST
//STEPLIB
// FT05F001
//FT06F001
//FT1 1F001
//FT12F001
//FT13F001
//FT14F001
//FT15F001
//FT16F001
//FT17F001
//FT18F001
//FT19F001
// FT20F001
//
//FT21F001
//* END

CATALOGED PROCEDURE NAMED FORCAST (09DEC76)

(OLD, KEEP)
(OLD, KEEP)
(OLD, KEEP)
(OLD, KEEP)
(OLD, KEEP)
(OLD, KEEP)
(OLD, KEEP)
(OLD, KEEP)
(OLD, KEEP)

PF.OC CLASS=A,CORE=128K,MEMB=DUMMY,
LIB= , NULLFILE* , UNITLIB=S YSDA

,

L0G=DUMMY,UNITS1=SYSDA,
J1=DUMMY,UNITJ1=2400,DISPJ1=
J2=DUMMY,UNITJ2=2400,DISPJ2=
J3=DUMMY,UNITJ3=2400,DISPJ3=
J4=DUMMY,UNITJ4=2400,DISPJ4=
J5=DUMMY,UNITJ5=2400,DISPJ5=
J6=DUMMY,UNITJ6=2400,DISPJ6=
J7=DUMMY,UNITJ7=2400,DISPJ7=
J8=DUMMY,UNITJ8=2400,DISPJ8=
J9=DUMMY,UNITJ9=2400,DISPJ9=

EXEC PGM=SMEMB,REGION=SCOPE
DD DSN=SLIB,UNIT=6UNITLIB,DISP= (SHR,PASS)
DD DDNAME=SYSIN
DD SYSOUT=SCLASS
DD GJ1,UNIT=6UNITJ1 , DISP=&DISPJ1
DD 6J2,UNIT=6UNITJ2,DISP=6DISPJ2
DD SJ3,UNTT=&UNITJ3,DISP=&DISPJ3
DD SJ4,UNIT=SUNITJ4,DISP=SDISPJ4
DD &J5,UNIT=6UNTTJ5,DISP=&DTSPJ5
DD &J6 , UNIT=6UNITJ6 ,DISP=&DISc'J6
DD SJ7 , UNIT=6UNITJ7 , DISP=& DISPJ7
DD £J8,UNIT=&UNITJ8,DISP=&DXSPJ8
DD &J9,UNIT=&UNITJ9,DISP=SDISPJ9
DD UNIT=&UNITS1 ,SPACE= (TRK f (1,1) , RLSE) ,

DCB= (R ECFM =FB,LR ECL=80, BLKSIZE=800)
&LOG ,DTSP=SHR, DCB= BLKSIZE=1 024DD

OF CATALOGED PROCEDURE FORCAST
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NOTES

1.0 &PARAM

1.1 EXZONS, ADA , SHE, DRT, AND BOS AEE KEYWOHDS THAT DETERMINE
MODAL AVAILABLITY. SEE (1) IN SECTION 3.2 OF THE EEPOET FOE
MOEE DETAILS.

1.2 SIMUL CONTEOLS THE PEECISION OF THE NON-WORK MODELS. IF SET
= 1 IT TOENS OFF THE N ON-iOR K MODELS. SEE (2) IN SECTION 3.2 OF
THE EEPOET FOE MOEE DETAILS.

1.3 INZONS AND EXZONS DESCBIBE THE EXTENT OF THE SEEVICE AEEA AND
EXTEENAL ZONES. SEE (11 IN SECTION 3.3 OF THE EEPOET FOR MOEE
DETAILS.

1.4' TEPTAB AND NWPQP DEFINE THE WORK TRIPS AND THE NON-WORK
POPULATION TO BE MODELLED. SEE (2) IN SECTION 3.3 OF THE REPORT
FOR MORE DETAILS.

1.5 AMWOEK AND PMWOEK DESCRIBE THE DISTRIBUTIONS OF WORK TRIPS
OVER THE DAY. SEE (4) IN SECTION 3.3 OF THE EEPOET FOR MORE
DETAILS.

1.6 AUTOS, HHOLDS, AND OVR64 DESCRIBE THE SOCIOECONOMIC
CHARACTERISTICS OF THE POPULATION BEING SERVED. SEE (5) IN
SECTION 3.3 OF THE REPORT FOR MORE DETAILS.

1.7 PTRIP, HDWEL1, HDWEL2, AND NHDWEL ARE INTEGRAL PARTS OF THE
NON-WORK MODELS. SEE (6) IN SECTION 3.3 OF THE REPORT FOR MORE
DETAILS.

1.8 FA, THE STREET ADJUSTMENT FACTOR IS FURTHER DISCUSSED IN
IN SECTION 3.4 OF THE REPORT.

1.9 THE SUPPLY MODEL PARAMETERS ARE FURTHER DISCUSSED IN SECTION
3. 3 OF THE REPORT.

4.0, 6PERIOD

4.1 BEGIN AND END DEFINE THE ANALYSIS PERIODS OF INTEREST. SEE
(31 IN SECTION 3.2 OF THE REPORT FOR MORE DETAILS.

4.2 LIMIT AND MAXITR CONTROL THE PRECISION OF THE WORK AND
NON-WORK MODELS TOGETHER. SEE (4) IN SECTION 3.2 OF THE REPORT
FOR MORE DETAILS.

4.3 FOR FURTHER DETAILS ON VEHS SEE (1) IN SECTION 3.3 OF THE
REPORT.

4.4 FOR FURTHER DETAILS ON VEHCAP SEE APPENDIX B OF THE
REPORT.

4.5 CARCOS DESCRIBES AN AUTO COST INPUT AS WELL AS THE SHARED RIDE
PENALTIES. SEE (4) IN SECTION 3.5 OF THE REPORT FOR MORE
DETAILS.
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4.6 BUSFAR, DRTFAR, BUSCON, AND DRTCOS DESCRIBE THE FARES
ASSOCIATED WITH BUS AND DRT. SEE (3) IN SECTION 3.5 OF THE
REPORT FOR MORE DETAILS.

4.7 PATRON IS USED TO PROVIDE AN INITIAL VOLUME IN THE DRT SYSTEM.
IT IS SPREAD EVENLY OVER ALL INTERNAL TO INTERNAL O-D PAIRS AFTER
BEING DIVIDED BY THE AVERAGE OF THE WORK AND NON-WORK GROUP SIZES.

4.8 FOR A FURTHER DISCUSSION OF THE REQUIRED MATRIX INPUTS SEE (2)

IN SECTION 3.5 OF THE REPORT.

4.9 FOR A FURTHER DISCUSSION OF THE OPTIONAL MATRIX INPUTS SEE (3)

IN SECTION 3.5 OF THE REPORT.
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APPENDIX D

DESCRIPTION OF DELIVERY TAPE FORMAT

A source deck listing has not been included in this report because of the

size of the programs. (A listing would be approximately 100 pages in length.)

A computer tape can be obtained from TSC , however, with the following information

Cataloged Procedure

Linkage Editor Control Cards

FORTRAN Source Deck

The format of the tape files is described on the following tape log. All the

files are card image (EBCDIC) 80 byte logical records, blocked 10 per physical

record, on standard IBM labeled files, on a 9 track tape 1200 feet long.

For further information about this tape, contact:

Dr. Howard Simkowitz
DOT/TSC
Kendall Square
Cambridge, Massachusetts 02142

D — 1



CSI070Volume

Page 1 of 1

Density 3200 fci Length 1200 ft. Track 9

Seq # 1 Name WYL . AR . CLW . FORCAST . PROC

LABEL SL .TOR DSORG PS RECFM FB LRECL 80 BLK
ST7>E_

800

Description: See

Format: EBCDIC

page D-l.

Seq # 2 Name WYL . AR . CLW . FORCAST . LKEDCARD

LABEL SL JOB DSORG PS RECFM FB LRECL 80 BLK
ST7.F. 800

Description: See page D-l.

Format: EBCDIC

Seq # 3 Name WYL . AR . CLW . FORCAST . SOURCE

LABEL SL job DSORG PS RECFM FB LRECL 80
BLK
ST7F 800

Description: See page D-l.

Format: EBCDIC
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APPENDIX E

REPORT OF INVENTIONS

Although a diligent review of the work performed under

this contract has revealed that no new innovation, discovery,

or invention of a patentable nature was made, this report

contains many advances to the state-of-the-art of patronage

forecasting applied to demand responsive transit systems.

The non-work trip model represents a significant method-

ological advance over prior models. It explicitly allows

for variations over the day in the propensity of people

to travel and also includes complex tours. The non-work

model not only represents a traveller's choice of mode, but

also the choice of destination. Thus, the model is capable

of forecasting how DRT service will alter the pattern of

non-work travel in an urban area.

The level of service, or supply, model is a set of

equations which predict period by period DRT average

systemwide wait time and ride time on an or i g in- d es t ina t i on

basis. These equations were estimated using data generated

with the MIT simulation model. These models can be used

in the overall model system or as stand alone forecasting

models .

E -
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Demand and level of service models are solved simultaneously

to obtain the equilibrium travel pattern. The model system has

been implemented in a computer software package and applied in a

set of highly simplified prototypical cities representing

a wide range of DRT systems. The resulting forecasts serve as

a sketch planning tool which can be used by planners who lack

the time or resources to use the detailed model system.

E —
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